Date

Underlying Event measurements in pp collisions at sqrt(s) = 0.9 and 7 TeV with the ALICE experiment at the LHC

The ALICE collaboration Abelev, Betty ; Abrahantes Quintana, Arian ; Adamova, Dagmar ; et al.
JHEP 07 (2012) 116, 2012.
Inspire Record 1080735 DOI 10.17182/hepdata.58863

We present measurements of Underlying Event observables in pp collisions at $\sqrt{s}$ = 0.9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum $p_{\rm T, LT}$ in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different $p_{\rm T}$ thresholds: 0.15, 0.5 and 1.0 GeV/$c$. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track $p){\rm T}$ threshold considered. Data are compared to Pythia 6.4, Pythia 8.1 and Phojet. On average, all models considered underestimate the multiplicity and summed $p_{\rm T}$ in the Transverse region by about 10-30%.

1 data table match query

The azimuthal correlation as a function of DPHI, the azimuthal different between tracks and the leading PT track, for events having PT > 1.0 GeV and the leading track PT in the range 4.0-6.0. The data is shown for centre-of-mass energies of 0.9 and 7 TeV.


Harmonic decomposition of two-particle angular correlations in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abelev, B. ; Abrahantes Quintana, A. ; et al.
Phys.Lett.B 708 (2012) 249-264, 2012.
Inspire Record 927105 DOI 10.17182/hepdata.58523

Angular correlations between unidentified charged trigger ($t$) and associated ($a$) particles are measured by the ALICE experiment in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV for transverse momenta $0.25 < p_{T}^{t,\, a} < 15$ GeV/$c$, where $p_{T}^t > p_{T}^a$. The shapes of the pair correlation distributions are studied in a variety of collision centrality classes between 0 and 50% of the total hadronic cross section for particles in the pseudorapidity interval $|\eta| < 1.0$. Distributions in relative azimuth $\Delta\phi \equiv \phi^t - \phi^a$ are analyzed for $|\Delta\eta| \equiv |\eta^t - \eta^a| > 0.8$, and are referred to as "long-range correlations". Fourier components $V_{n\Delta} \equiv \langle \cos(n\Delta\phi)\rangle$ are extracted from the long-range azimuthal correlation functions. If particle pairs are correlated to one another through their individual correlation to a common symmetry plane, then the pair anisotropy $V_{n\Delta}(p_{T}^t, p_{T}^a)$ is fully described in terms of single-particle anisotropies $v_n (p_{T})$ as $V_{n\Delta}(p_{T}^t, p_{T}^a) = v_n(p_{T}^t) \, v_n(p_{T}^a)$. This expectation is tested for $1 \leq n \leq 5$ by applying a global fit of all $V_{n\Delta} (p_{T}^t, p_{T}^a)$ to obtain the best values $v_{n}\{GF\} (p_{T})$. It is found that for $2 \leq n \leq 5$, the fit agrees well with data up to $p_T^a \sim 3$-4 GeV/$c$, with a trend of increasing deviation as $p_{T}^t$ and $p_{T}^a$ are increased or as collisions become more peripheral. This suggests that no pair correlation harmonic can be described over the full $0.25 < p_{T} < 15$ GeV/$c$ range using a single $v_n(p_T)$ curve; such a description is however approximately possible for $2 \leq n \leq 5$ when $p_T^a < 4$ GeV/$c$. For the $n=1$ harmonic, however, a single $v_1(p_T$ curve is not obtained even within the reduced range $p_T^a < 4$ GeV/$c$.

1 data table match query

V3Delta coefficients as a function of the trigger particle PT for events in the centrality class 0-10% having the associated particle PT in the range 0.25-0.5 GeV. Note that in the paper the data are plotted multiplied by 100.


Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at sqrt(s_{(NN)}) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abelev, B. ; Abrahantes Quintana, A. ; et al.
Phys.Rev.Lett. 107 (2011) 032301, 2011.
Inspire Record 900651 DOI 10.17182/hepdata.62026

We report on the first measurement of the triangular $v_3$, quadrangular $v_4$, and pentagonal $v_5$ charged particle flow in Pb-Pb collisions at 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow $v_2$ and $v_3$ have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.

1 data table match query

v2{SP,Deltaeta=1.0} (blue open circles).


Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV with ALICE at LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 68 (2010) 89-108, 2010.
Inspire Record 852450 DOI 10.17182/hepdata.54742

Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range |$\eta$| < 1.4. In the central region (|$\eta$| < 0.5), at 0.9 TeV, we measure charged-particle pseudorapidity density dNch/deta = 3.02 $\pm$ 0.01 (stat.) $^{+0.08}_{-0.05}$ (syst.) for inelastic interactions, and dNch/deta = 3.58 $\pm$ 0.01 (stat.) $^{+0.12}_{-0.12}$ (syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dNch/deta = 3.77 $\pm$ 0.01 (stat.) $^{+0.25}_{-0.12}$ (syst.) for inelastic, and dNch/deta = 4.43 $\pm$ 0.01 (stat.) $^{+0.17}_{-0.12}$ (syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% $\pm$ 0.5% (stat.) $^{+5.7}_{-2.8}$% (syst.) for inelastic and 23.7% $\pm$ 0.5% (stat.) $^{+4.6}_{-1.1}$% (syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.

1 data table match query

Mean CQ moments of the multiplicity distributions for the pseudorapidity range -1.0 to 1.0 in P P NSD collisions at centre-of-mass energies 900 and 2360 GeV.


Two-pion Bose-Einstein correlations in pp collisions at sqrt(s)=900 GeV

The ALICE collaboration Aamodt, K ; Abel, N ; Abeysekara, U. ; et al.
Phys.Rev.D 82 (2010) 052001, 2010.
Inspire Record 860477 DOI 10.17182/hepdata.55128

We report on the measurement of two-pion correlation functions from pp collisions at $\sqrt{s}=900$ GeV performed by the ALICE experiment at the Large Hadron Collider. Our analysis shows an increase of the HBT radius with increasing event multiplicity, in line with other measurements done in particle- and nuclear collisions. Conversely, the strong decrease of the radius with increasing transverse momentum, as observed at RHIC and at Tevatron, is not manifest in our data.

1 data table match query

Simulated two-particle correlation functions, using PHOJET, for like-sign and unlike sign pion pairs.


Vector boson scattering and anomalous quartic couplings in final states with $\ellν$qq or $\ell\ell$qq plus jets using proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-SMP-22-011, 2025.
Inspire Record 3006061 DOI 10.17182/hepdata.165281

A measurement is presented of the electroweak vector boson scattering production of ZV (V = W, Z) boson pairs associated with two jets in proton-proton collisions at a center-of-mass energy of 13 TeV. The data, corresponding to an integrated luminosity of 138 fb$^{-1}$, were collected at the CERN LHC with the CMS detector during the 2016$-$2018 data-taking period. The analysis targets final states with a pair of isolated electrons or muons from Z boson decays and three or four jets, depending on the momentum of the vector boson that decays into quarks. Signal strength is measured for events characterized by a large invariant mass of two forward jets with a wide pseudorapidity gap between them. The electroweak production of ZV in association with two jets is measured with an observed (expected) significance of 1.3 (1.8) standard deviations. A combination of the analyses of ZV channel and the previously published WV channel in the lepton plus jets final state places constraints on effective field theory parameters that describe anomalous electroweak production of WW, WZ, and ZZ boson pairs in association with two jets. Several world best limits are set on anomalous quartic gauge couplings in terms of dimension-8 standard model effective field theory operators.

10 data tables match query

Distributions of DNN score for the data and post-fit backgrounds (stacked histograms), in the SRs of the ZV channel for the b tag (left) and the b veto (right) channels, for the resolved (merged) category in the first (second) row. The post-fit VBS EW ZV signal is shown overlaid as a red solid line. The overflow is included in the last bin. The lower panels show the ratios of the data to the pre-fit background prediction and post-fit background yield as red open squares and blue points, respectively. The gray band in the lower panels indicates the systematic component of the post-fit background uncertainty. The vertical bars on the data points represent statistical uncertainties. The last bin includes overflow.

Distributions of DNN score for the data and post-fit backgrounds (stacked histograms), in the SRs of the ZV channel for the b tag (left) and the b veto (right) channels, for the resolved (merged) category in the first (second) row. The post-fit VBS EW ZV signal is shown overlaid as a red solid line. The overflow is included in the last bin. The lower panels show the ratios of the data to the pre-fit background prediction and post-fit background yield as red open squares and blue points, respectively. The gray band in the lower panels indicates the systematic component of the post-fit background uncertainty. The vertical bars on the data points represent statistical uncertainties. The last bin includes overflow.

Distributions of DNN score for the data and post-fit backgrounds (stacked histograms), in the SRs of the ZV channel for the b tag (left) and the b veto (right) channels, for the resolved (merged) category in the first (second) row. The post-fit VBS EW ZV signal is shown overlaid as a red solid line. The overflow is included in the last bin. The lower panels show the ratios of the data to the pre-fit background prediction and post-fit background yield as red open squares and blue points, respectively. The gray band in the lower panels indicates the systematic component of the post-fit background uncertainty. The vertical bars on the data points represent statistical uncertainties. The last bin includes overflow.

More…

Measurement of the $\Upsilon$ polarization in $pp$ collisions at $\sqrt{s}$=7 and 8TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 12 (2017) 110, 2017.
Inspire Record 1621596 DOI 10.17182/hepdata.80046

The polarization of the $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S) $mesons, produced in $pp$ collisions at centre-of-mass energies $\sqrt{s}$=7 and 8TeV, is measured using data samples collected by the LHCb experiment, corresponding to integrated luminosities of 1 and 2fb$^{-1}$, respectively. The measurements are performed in three polarization frames, using $\Upsilon\to\mu^+\mu^-$ decays in the kinematic region of the transverse momentum $p_{T}(\Upsilon)<30GeV/c$, and rapidity $2.2<y(\Upsilon)<4.5$. No large polarization is observed.

1 data table match query

The polarization parameter $\lambda_{\theta\phi}$ measured in the Gottfried-Jackson frame for the $\Upsilon(1S)$ state in different bins of $p_{T}^{\Upsilon}$ and three rapidity ranges using data collected at $\sqrt{s}=8\,\mathrm{TeV}$. The first quoted uncertainty is statistical and the second is systematic.


Angular analysis of the $B^{+}\rightarrow K^{\ast+}\mu^{+}\mu^{-}$ decay

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
Phys.Rev.Lett. 126 (2021) 161802, 2021.
Inspire Record 1838196 DOI 10.17182/hepdata.105273

We present an angular analysis of the $B^{+}\rightarrow K^{\ast+}(\rightarrow K_{S}^{0}\pi^{+})\mu^{+}\mu^{-}$ decay using 9$\,\mbox{fb}^{-1}$ of $pp$ collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from Standard Model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner $B^{0}\rightarrow K^{\ast0}\mu^{+}\mu^{-}$ decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.

2 data tables match query

The CP-averaged observable Fl versus q2. The first (second) error bars represent the statistical (total) uncertainties.

Correlation matrix for the optimised observables FL and P1–P'8 from the maximum-likelihood fit in the interval 15.00 < q2 < 19.00 GeV2/c4


Search for a new scalar resonance decaying to a Higgs boson and another new scalar particle in the final state with two bottom quarks and two photons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-B2G-24-001, 2025.
Inspire Record 2961026 DOI 10.17182/hepdata.158364

A search is presented for a new scalar resonance, X, decaying to a standard model Higgs boson and another new scalar particle, Y, in the final state where the Higgs boson decays to a $\mathrm{b\bar{b}}$ pair, while the Y particle decays to a pair of photons. The search is performed in the mass range 240$-$100 \GeV for the resonance X, and in the mass range 70$-$800 GeV for the particle Y, using proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 132 fb$^{-1}$. In general, the data are found to be compatible with the standard model expectation. Observed (expected) upper limits at 95% confidence level on the product of the production cross section and the relevant branching fraction are extracted for the X $\to$ YH process, and are found to be within the range of 0.05$-$2.69 (0.08$-$1.94) fb, depending on $m_\mathrm{X}$ and $m_\mathrm{Y}$. The most significant deviation from the background-only hypothesis is observed for X and Y masses of 300 and 77 GeV, respectively, with a local (global) significance of 3.33 (0.65) standard deviations.

1 data table match query

Parametric models of the signal process for mX=600GeV, mY=70GeV in their most sensitive SR The histograms are normalized to unity. The acronym 'dof' stands for the numbers of degrees of freedom of the parametric model. The signal is modeled using a double-sided Crystal Ball (DCB) function defined as: DCB$(x)$ = \[ \begin{cases} N \cdot A_1 \cdot (B_1 - x_s)^{-m_1}, & x_s \leq -\beta_1 \\ N \cdot e^{-\frac{1}{2} x_s^2}, & -\beta_1 < x_s < \beta_2 \\ N \cdot A_2 \cdot (B_2 + x_s)^{-m_2}, & x_s \geq \beta_2 \end{cases} \] with \(x_s = \frac{x - \mu}{\sigma}\), and: \[ A_1 = \left( \frac{m_1}{\beta_1} \right)^{m_1} e^{-\frac{1}{2} \beta_1^2}, \quad B_1 = \frac{m_1}{\beta_1} - \beta_1 \] \[ A_2 = \left( \frac{m_2}{\beta_2} \right)^{m_2} e^{-\frac{1}{2} \beta_2^2}, \quad B_2 = \frac{m_2}{\beta_2} - \beta_2 \] The DCB parameters for this signal model are: \[ \begin{aligned} N &= 1.0226, & \mu &= 69.91014, & \sigma &= 0.67412 \\ \beta_1 &= 1.35, & m_1 &= 2.9491, & \beta_2 &= 1.5468, & m_2 &= 12.7113 \end{aligned} \]


Characterizing the initial state and dynamical evolution in XeXe and PbPb collisions using multiparticle cumulants

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-HIN-24-004, 2025.
Inspire Record 3075174 DOI 10.17182/hepdata.161536

For the first time, correlations among mixed-order moments of two or three flow harmonics $-$($v_{n}^{k},v_{m}^{l}$) and ($v_{n}^{k},v_{m}^{l}, v_{p}^{q}$), with $k$, $l$, and $q$ denoting the respective orders$-$are measured in xenon-xenon (XeXe) collisions and compared with lead-lead (PbPb) results, providing a novel probe of collective behavior in heavy ion collisions. These measurements compare a nearly spherical, doubly-magic ${}^{208}$Pb nucleus to a triaxially deformed ${}^{129}$Xe nucleus, emphasizing the sensitivity to dynamic nuclear deformation. The dependence of these results ($v_{n}$, $n$ = 2, 3, 4) on the shape and size of the nuclear overlap region is studied. Comparisons between $v_{2}$, $v_{3}$, and $v_{4}$ demonstrate the importance of $v_{3}$ and $v_{4}$ in exploring the nonlinear hydrodynamic response of the quark-gluon plasma (QGP) to the initial spatial anisotropy. The results constrain initial-state model parameters that influence the evolution of the QGP. The CMS detector was used to collect XeXe and PbPb data at nucleon-nucleon center-of-mass energies of $\sqrt{s_\mathrm{NN}}$ = 5.44 and 5.36 TeV, respectively. Correlations are extracted using multiparticle mixed-harmonic cumulants (up to eight-particle cumulants) with charged particles in the pseudorapidity range $\lvertη\rvert$$\lt$ 2.4 and transverse momentum range 0.5 $\lt$$p_\mathrm{T}$$\lt$ 3 GeV/$c$.

1 data table match query

Eight-particle normalized mixed harmonic cumulant nMHC(v_{2}^{2}, v_{4}^{6} as a function of centrality in XeXe and PbPb collisions.