We report the double helicity asymmetry, $A_{LL}^{J/\psi}$, in inclusive $J/\psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $\sqrt{s}=510$ GeV longitudinally polarized $p
$A_{LL}^{J/\psi}$ as a function of $p_T$ or $|y|$. $N_{J/\psi}^{2\sigma}$ is the $J/\psi$ counting within its $2\sigma$ mass window. The column of Type A systematic uncertainties are a statistically weighted quadratic combination of the background fraction and run grouping uncertainties. $\Delta A_{LL}$ (Rel. Lumi.) is the global systematic uncertainty from relative luminosity measurements. $\Delta A_{LL}$ (Polarization) is the systematic uncertainty from the beam polarization measurement: a zero indicates an uncertainty $< 0.001$.
Results are presented from data recorded in 2009 by the PHENIX experiment at the Relativistic Heavy Ion Collider for the double-longitudinal spin asymmetry, $A_{LL}$, for $\pi^0$ and $\eta$ production in $\sqrt{s} = 200$ GeV polarized $p$$+$$p$ collisions. Comparison of the $\pi^0$ results with different theory expectations based on fits of other published data showed a preference for small positive values of gluon polarization, $\Delta G$, in the proton in the probed Bjorken $x$ range. The effect of adding the new 2009 \pz data to a recent global analysis of polarized scattering data is also shown, resulting in a best fit value $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}} = 0.06^{+0.11}_{-0.15}$ in the range $0.05
PI0 ASYM(LL) measurements from 2005.
PI0 ASYM(LL) measurements from 2006.
PI0 ASYM(LL) measurements from 2009.
We report measurements of the exclusive electroproduction of $K^+\Lambda$ and $K^+\Sigma^0$ final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions $\sigma_T$, $\sigma_L$, $\sigma_{TT}$, and $\sigma_{LT}$ were extracted from the $\Phi$- and $\epsilon$-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first $\sigma_L/\sigma_T$ separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from $0.5\leq Q^2\leq 2.8$ GeV$^2$ and invariant energy from $1.6\leq W\leq 2.4$ GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the $\Lambda$ and $\Sigma^0$ hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.6 to 1.7 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.70 to 1.75 GeV.
Cross sections for incident energy 2.567 GeV for the Q**2 range 0.5 to 0.8 GeV**2 and W range 1.75 to 1.80 GeV.
We present new accurate measurements of the differential cross section $\sigma(\theta)$ and the proton analyzing power $A_{y}$ for proton-$^{3}$He elastic scattering at various energies. A supersonic gas jet target has been employed to obtain these low energy cross section measurements. The $\sigma(\theta)$ distributions have been measured at $E_{p}$ = 0.99, 1.59, 2.24, 3.11, and 4.02 MeV. Full angular distributions of $A_{y}$ have been measured at $E_{p}$ = 1.60, 2.25, 3.13, and 4.05 MeV. This set of high-precision data is compared to four-body variational calculations employing realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions. For the unpolarized cross section the agreement between the theoretical calculation and data is good when a $3N$ potential is used. The comparison between the calculated and measured proton analyzing powers reveals discrepancies of approximately 50% at the maximum of each distribution. This is analogous to the existing ``$A_{y}$ Puzzle'' known for the past 20 years in nucleon-deuteron elastic scattering.
The measured P-HE3 elastic differential cross section at proton energy 0.99MeV.
The measured P-HE3 elastic differential cross section at proton energy 1.59MeV.
The measured P-HE3 elastic differential cross section at proton energy 2.24MeV.
Single-spin asymmetries for hadrons have been measured in collisions of transversely-polarized 40 GeV/c proton beam with an unpolarized liquid hydrogen target. The asymmetries were measured for pi+-, K+-, protons and antiprotons, produced in the central region (0.02 < Xf < 0.10 and 0.7 < Pt < 3.4 GeV/c). Asymmetries for pi+-, K+- and antiprotons show within measurement errors the linear dependence on Xt and change a sign near 0.37. For protons negative asymmetry, independent of Xt has been found. The results are compared with those of other experiments and SU(6) model predictions.
.
.
.
The ITEP-PNPI collaboration presents the first results of the spin rotation parameter A + measurements in the second resonance region. The experiment was performed at the ITEP accelerator at a positive pion beam momentum 1.43 GeV/c for scattering angles θ cm = 127° and 133°. The setup was based on a polarized proton target and a carbon-plate polarimeter. The obtained data is compared with the predictions of the existing partial-wave analyses.
No description provided.
None
THE MOMENTUM OF EACH INCIDENT PION WAS DETERMINED WITH AN ACCURACY 0.2 PCT.
THE MOMENTUM OF EACH INCIDENT PION WAS DETERMINED WITH AN ACCURACY 0.2 PCT.
THE MOMENTUM OF EACH INCIDENT PION WAS DETERMINED WITH AN ACCURACY 0.2 PCT.
Accurate measurements of the left-right asymmetry in π−p→γn at pπ=427−625 MeV/c with a transversely polarized target are reported. Results are compared with the predictions from the Arai and Fujii single-pion photoproduction partial-wave analysis and with data on the inverse process measured with a deuterium target. The agreement is poor, casting doubt on the correctness of the value for the radiative-decay amplitude of the neutral Roper resonance now in use.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.