Showing 1 of 1 results
A search for beyond the standard model spin-0 bosons, $\phi$, that decay into pairs of electrons, muons, or tau leptons is presented. The search targets the associated production of such bosons with a W or Z gauge boson, or a top quark-antiquark pair, and uses events with three or four charged leptons, including hadronically decaying tau leptons. The proton-proton collision data set used in the analysis was collected at the LHC from 2016 to 2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb$^{-1}$. The observations are consistent with the predictions from standard model processes. Upper limits are placed on the product of cross sections and branching fractions of such new particles over the mass range of 15 to 350 GeV with scalar, pseudoscalar, or Higgs-boson-like couplings, as well as on the product of coupling parameters and branching fractions. Several model-dependent exclusion limits are also presented. For a Higgs-boson-like $\phi$ model, limits are set on the mixing angle of the Higgs boson with the $\phi$ boson. For the associated production of a $\phi$ boson with a top quark-antiquark pair, limits are set on the coupling to top quarks. Finally, limits are set for the first time on a fermiophilic dilaton-like model with scalar couplings and a fermiophilic axion-like model with pseudoscalar couplings.
Binned representation of the control and signal regions for the combined multilepton event selection and the combined 2016–2018 data set. The control region bins follow their definitions as given in Table 1 of the paper, and the signal region bins correspond to the channels as defined by the lepton flavor composition. The normalizations of the background samples in the control regions are described in Sections 5.1 and 5.2 of the paper. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$, and those satisfying any of the control region requirements are removed from the signal region bins. All subsequent selections given in Tables 2 and 3 of the paper are based on events given in the signal region bins. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.
The $M_{OSSF}$ spectrum for the combined 2L1T, 2L2T, 3L, 3L1T, and 4L event selection (excluding the $\mathrm{Z\gamma}$ control region) and the combined 2016-2018 data set. All three (four) lepton events are required to have $\mathrm{Q_{\ell}=1 (0)}$. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the statistical uncertainties in the background prediction.
Dilepton mass spectra for the low mass $W\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $W\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $Z\phi($ee$)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $Z\phi($ee$)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi($ee$)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi($ee$)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $W\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $W\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $W\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $Z\phi(\mu\mu)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $Z\phi(\mu\mu)$ SR event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the low mass $t\bar{t}\phi(\mu\mu)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the high mass $t\bar{t}\phi(\mu\mu)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $W\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $Z\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR1 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR2 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR3 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR4 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR5 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR6 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
Dilepton mass spectra for the $t\bar{t}\phi(\tau\tau)$ SR7 event selections for the combined 2016–2018 data set. The lower panel shows the ratio of observed events to the total expected SM background prediction (Obs/Exp), and the gray band represents the sum of statistical and systematic uncertainties in the background prediction. The rightmost bin contains the overflow events in each distribution. The expected background distributions and the uncertainties are shown after the data is fit under the background-only hypothesis. For illustration, two example signal hypotheses for the production and decay of a scalar and a pseudoscalar $\phi$ boson are shown, and their masses (in units of GeV) are indicated in the legend. The signals are normalized to the product of the cross section and branching fraction of 10 fb.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $W\phi$ signal with H-like production in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $W\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $Z\phi$ signal with H-like production in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $Z\phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the ee decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the $\mu\mu$ decay scenario. The vertical gray band indicates the mass region not considered in the analysis. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with scalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal with pseudoscalar couplings in the $\tau\tau$ decay scenario. The red line is the theoretical prediction for the product of the production cross section and branching fraction of the $t\bar{t} \phi$ signal.
The 95% confidence level upper limits on $g^2_{tS}$ for the dilaton-like $t\bar{t} \phi$ signal model. Masses of the $\phi$ boson above 300 GeV are not probed for the dilaton-like signal model as the $\phi$ branching fraction into top quark-antiquark pairs becomes nonnegligible.
The 95% confidence level upper limits on $g^2_{tPS}$ for the axion-like $t\bar{t} \phi$ signal model. Masses of the $\phi$ boson above 300 GeV are not probed for the axion-like signal model as the $\phi$ branching fraction into top quark-antiquark pairs becomes nonnegligible.
The 95% confidence level upper limits on the product of $sin^2 \theta$ and branching fraction for the H-like production of X$\phi \rightarrow$ ee. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level upper limits on the product of $sin^2 \theta$ and branching fraction for the H-like production of X$\phi \rightarrow \mu\mu$. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level upper limits on $sin^2 \theta$ for the H-like production and decay of X$\phi$ signal model.
Cross section in units of pb for the W$\phi$, Z$\phi$, and $t\bar{t}\phi$ signals as a function of the $\phi$ boson mass in GeV. All cross sections are inclusive of all W, Z, $t\bar{t}$ and $\phi$ decay modes.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $t\bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $ee$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $ee$)$ is the branching fraction of the $\phi$ boson into an electron pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\mu\mu$$)$ is the branching fraction of the $\phi$ boson into a muon pair. The vertical gray band indicates the mass region not considered in the analysis.
The 95% confidence level expected and observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ of the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow $$\tau\tau$$)$ is the branching fraction of the $\phi$ boson into a tau pair.
The 95% confidence level observed upper limits on the product of $\sigma$($t \bar{t} \phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $t \bar{t} \phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($t \bar{t} \phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $t \bar{t} \phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($W\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with H-like production, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $W\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with scalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with pseudoscalar couplings, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\sigma$($Z\phi$) and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with H-like production, where $\sigma$ denotes the production cross section and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The red dash-dotted line is the theoretical prediction for $\sigma\bf{\it{B}}$ of the $Z\phi$ signal. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $g^{2}_{tS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with scalar couplings, where $g_{tS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $g^{2}_{tPS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with pseudoscalar couplings, where $g_{tPS}$ denotes the coupling of the $\phi$ boson to the top quark and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $t \bar{t} \phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $W\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{S}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with scalar couplings, where $\Lambda_{S}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $\Lambda^{-2}_{PS}$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with pseudoscalar couplings, where $\Lambda_{PS}$ denotes the mass scale of the effective interaction and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The 95% confidence level observed upper limits on the product of $sin^2 \theta$ and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ for the $Z\phi$ signal with H-like production, where $\theta$ denotes the mixing angle of the Higgs boson with the $\phi$ boson and $\bf{\it{B}}(\phi \rightarrow \ell \ell)$ is the branching fraction of the $\phi$ boson into a lepton pair of given flavor. Exclusions on the dielectron, dimuon, and ditau decay scenarios of the $\phi$ boson are shown with the green, blue, and orange solid lines, respectively. The vertical gray band indicates the mass region not considered in the analysis in the dielectron and dimuon decay scenarios of the $\phi$ boson.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $t\bar{t} \phi$ signal (with inclusive $t\bar{t}$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $W\phi$ signal (with leptonic $W$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a scalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for a pseudoscalar $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dielectron decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the dimuon decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
The product of acceptance and efficiency, $A\varepsilon$, for an H-like $\phi$ boson in the $Z\phi$ signal (with leptonic $Z$ decay) in each signal region in the ditau decay scenario. Each value is computed as the ratio of the number of simulated signal events passing all selection criteria to the total number of simulated signal events, and includes the data-to-simulation correction factors described in the paper.
Selected signal shapes of the $W\phi$(ee) signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$(ee) signal are provided in the SignalShapes_XPhiToEleEle.root file, and a README file with instructions is provided under Additional Resources.
Selected signal shapes of the $W\phi$$(\mu\mu)$ signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$$(\mu\mu)$ signal are provided in the SignalShapes_XPhiToMuMu.root file, and a README file with instructions is provided under Additional Resources.
Selected signal shapes of the $W\phi$$(\tau\tau)$ signal for illustration purposes. All shape parametrizations for all coupling scenarios of the $X\phi$$(\tau\tau)$ signal are provided in the SignalShapes_XPhiToTauTau.root file, and a README file with instructions is provided under Additional Resources.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.