The cross section for anti-deuteron photoproduction is measured at HERA at a mean centre-of-mass energy of W_{\gamma p} = 200 GeV in the range 0.2 < p_T/M < 0.7 and |y| < 0.4, where M, p_T and y are the mass, transverse momentum and rapidity in the laboratory frame of the anti-deuteron, respectively. The numbers of anti-deuterons per event are found to be similar in photoproduction to those in central proton-proton collisions at the CERN ISR but much lower than those in central Au-Au collisions at RHIC. The coalescence parameter B_2, which characterizes the likelihood of anti-deuteron production, is measured in photoproduction to be 0.010 \pm 0.002 \pm 0.001, which is much higher than in Au-Au collisions at a similar nucleon-nucleon centre-of-mass energy. No significant production of particles heavier than deuterons is observed and upper limits are set on the photoproduction cross sections for such particles.
The measured value of the invariant DEUTBAR production cross section. The data are normalized to a total photoproduction cross section of (164 +- 11 MUB).
The measured and weak decay corrected values of the DEUTBAR to PBAR cross sections.
Dijet production in deep inelastic ep scattering is investigated in the region of low values of the Bjorken-variable x (10^-4 < x < 10^-2) and low photon virtualities Q^2 (5 < Q^2 < 100 GeV^2). The measured dijet cross sections are compared with perturbative QCD calculations in next-to-leading order. For most dijet variables studied, these calculations can provide a reasonable description of the data over the full phase space region covered, including the region of very low x. However, large discrepancies are observed for events with small separation in azimuth between the two highest transverse momentum jets. This region of phase space is described better by predictions based on the CCFM evolution equation, which incorporates k_t factorized unintegrated parton distributions. A reasonable description is also obtained using the Color Dipole Model or models incorporating virtual photon structure.
Inclusive dijet cross section for a lower ET cut off of (5+0) GeV for the highest ET jet.
Inclusive dijet cross section for a lower ET cut off of (5+1) GeV for the highest ET jet.
Inclusive dijet cross section for a lower ET cut off of (5+2) GeV for the highest ET jet.
The observation of an anomalous J/ ψ suppression in Pb–Pb collisions by the NA50 Collaboration can be considered as the most striking indication for the deconfinement of quarks and gluons at SPS energies. In this Letter, we determine the J/ ψ suppression pattern as a function of the forward hadronic energy E ZDC measured in a Zero Degree Calorimeter (ZDC). The direct connection between E ZDC and the geometry of the collision allows us to calculate, within a Glauber approach, the precise relation between the number of participant nucleons N part and E ZDC . Then, we check if the experimental data can be better explained by a sudden or a smooth onset of the anomalous J/ ψ suppression as a function of the number of participants.
Minimum Bias E(C=ZDC) spectrum. Data extracted from fig with g3data, statistical errors not included and are set to 0, the systematic errors given by g3data due to extraction.
Number of participants as a function of E(C=ZDC) Data exctracted from fig with g3data, the systematic errors given by g3data due to extraction, and those marked (stat) are in this case the r.m.s. of the Npart distribution at fixed E(C=ZDC).;.
SIG(J/PSI)/SIG(DY) as a function of E(C=ZDC) with the standard analyses of the 1996 DATA 1996, standard analyses.
The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation CA/CF. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution y, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is 2.77±0.11±0.10. Due to non-perturbative effects, the data are below the expectation at small y. The transition from the perturbative to the non-perturbative domain appears at smaller y for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets.
Scaled energy distribution of charged hadrons produced in Quark jets in 'Y'topology 3-JET events.
Scaled energy distribution of charged hadrons produced in Gluon jets in 'Y'topology 3-JET events.
Scaled energy distribution of charged hadrons produced in Quark jets in 'Mercedes' topology 3-JET events.
Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine αs from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: $$←pha _s(133 {⤪ GeV})={0.116}pm {0.007}_{exp-0.004theo}^{+0.005}$$ from the high energy data.
mean values for event shape variables.
Integral of event shape distribution over the specified interval.
Integral of event shape distribution over the specified interval.
Four-fermion events have been selected in a data sample of 5.8 pb −1 collected with the aleph detector at centre-of-mass energies of 130 and 136 GeV. The final states ℓ + ℓ − q q , ℓ + ℓ − ℓ + ℓ − , ν ν q q , and ν ν ℓ + ℓ − have been examined. Five events are observed in the data, in agreement with the Standard Model predictions of 6.67±0.38 events from four-fermion processes and 0.14 −0.05 +0.19 from background processes.
The statistical and systematic uncertainties have been combined in quadrature in the background expectations.
In this paper we present a study on the production of the J ψ and ψ′ resonances, decaying into muon pairs, in S-U collisions, at 200 GeV per incident nucleon. We find that the ratio between ψ′ and tJ ψ yields decreases as E T , the neutral transverse energy produced in the collision, increases. There is also a clear decrease of this ratio when going from p-W to S-U interactions. Assuming the high mass continuum to be Drell-Yan we discuss the possible understanding of the intermediate dimuon mass region as a superposition of Drell-Yan (extrapolated down in mass) and muon pairs from the semileptonic decays of charmed mesons. The p-W data is found to be explained by this procedure. However, the S-U data seems to be incompatible with a linear extrapolation from the proton-nucleus results.
THE NEUTRAL TRANSVERSE ENERGY PRODUCED IN THE COLLISION > 15 GEV.
THE NEUTRAL TRANSVERSE ENERGY PRODUCED IN THE COLLISION > 15 GEV.
THE NEUTRAL TRANSVERSE ENERGY PRODUCED IN THE COLLISION > 15 GEV.
This paper presents an analysis of the multiplicity distributions of charged particles produced inZ0 hadronic decays in the DELPHI detector. It is based on a sample of 25364 events. The average multiplicity is
Charged particle multiplicity distribution for the raw data in full phase space.
Charged particle multiplicity distribution for full phase space. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included. The first two points, at N=2 and 4, were not measured but taken from the Lund PS model.
Charged particle multiplicity distribution for single hemisphere. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included.
Data on p and Λ production by e + e − -annihilation at CM energies between 30 and 36 GeV are presented. Indication for an angular anticorrelation in events with baryon-antibaryon pairs is seen.
No description provided.
No description provided.
AVERAGE NUMBER OF ANTIBARYONS PER HADRONIC EVENT. AN EXPONENTIAL SLOPE OF 2.5 GEV*-1 IN E WAS ASSUMED IN EXTRAPOLATING E*D3(SIG)/DP**3 TO ALL MOMENTA.