A Measurement of the tau leptonic branching fractions

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 357 (1995) 715-724, 1995.
Inspire Record 398321 DOI 10.17182/hepdata.48138

A sample of 25000 Z 0 → τ + τ − events collected by the DELPHI experiment at LEP in 1991 and 1992 is used to measure the leptonic branching fractions of the τ lepton. The results are B(τ → eν ν ) = (17.51 ± 0.39) % and B(τ → μν ν ) = (17.02 ± 0.31) %. The ratio of the muon and electron couplings to the weak charged current is measured to be g μ g e = 1.000 ± 0.013 , satisfying e-μ universality. The leptonic branching fraction corrected to the value for a massless lepton, assuming e-μ universality, is found to be B(τ → lν ν ) = (17.50 ± 0.25) %.

3 data tables

Axis error includes +- 0.23/0.23 contribution (Data statistics).

Axis error includes +- 0.19/0.19 contribution (Data statistics).

Combined from the two branching fractions above. E-MU universality assumed.


A PARTIAL WAVE ANALYSIS OF THE (K pi pi) SYSTEM IN THE REACTION pi- p ---> (K+ pi- pi0) LAMBDA AT 3.95-GeV/c

The CERN-College de France-Madrid-Stockholm collaboration Fernandez, C. ; Aguilar-Benitez, M. ; Cerrada, M. ; et al.
Z.Phys.C 16 (1982) 95, 1982.
Inspire Record 178875 DOI 10.17182/hepdata.16389

Results from a partial wave analysis of theKππ system produced in the hypercharge exchange reaction π−p→(K+π−π0)Λ at 3.95 GeV/c are presented. SignificantQ1 production is observed but no evidence is found forQ2 production thus confirming the results obtained in a previous decay Dalitz plot analysis of the same reaction. The relative phase behaviour of the 1+(Kϱ) partial waves obtained with the present analysis provides additional confirmation of the resonance interpretation of theQ1 enhancement. Information is also obtained about its production properties and the role played by the Λ polarization in the hypercharge exchange reaction. This is compared with the results obtained in the reactionK−p→(π+π−π0)Λ at 4 GeV/c.

6 data tables

LAMBDA POLARIZATION CALCULATED AS AVERAGE POLARIZATION OF ALL 1 + (K RHO0) PARTIAL WAVES IN THE QLOW(1240) REGION.

SPIN PARITY CONTENT OF (K PI PI) SYSTEM.

CONTRIBUTION TO THE TOTAL JP=1+ INTENSITY FROM THE K* AND RHO ISOBARS.

More…

A Precise Measurement of the $Z$ Resonance Parameters Through Its Hadronic Decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 241 (1990) 435-448, 1990.
Inspire Record 295501 DOI 10.17182/hepdata.29722

A measurement of the cross section for e + e - → hadrons using 11 000 hadronic decays of the Z boson at ten different center-of-mass energies is presented. A three-parameter fit gives the following values for the Z mass M z , the total width Γ z , the product of the electronic and hadronic partial widths Γ e Γ h , and the unfolded pole cross section σ 0 : M Z =91.171±0.030(stat)±0.030 (beam) GeV, Γ Z =2.511±0.065 GeV, Γ e Γ h =0.148±0.006 (stat.)±0.004 (syst.) GeV 2 , σ 0 =41.6±0.7(stat.)±1.1 (syst.) nb,

1 data table

No description provided.


A Precision measurement of the number of neutrino species

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 249 (1990) 341-352, 1990.
Inspire Record 298079 DOI 10.17182/hepdata.29659

We have measured the cross section for e + e − →hadrons over the center of mass energy range of the Z 0 peak, from 88.22 to 95.03 GeV. We determine the Z 0 mass M z =91.164±0.013 (experiment) ±0.030 (LEP) GeV. Within the framework of the standard model we determine the invisible width, Γ invisible =0.502±0.018 GeV, and the number of light neutrino species, N ν =3.01±0.11. We exclude the existence of a supersymmetric scalar neutrino having a mass less than 31.4 GeV, at the 95% confidence level. We performed a model independent combined fit to the e + e − →hadrons and e + e − → μ + μ − data to determine total width, leptonic width and hadronic width of the Z 0 .

2 data tables

Cross sections from 1990 data. Additional systematic error 1.5 pct.

Cross sections from 1989 data. This data has been rescaled by 0.96 from original publication PL B237 (90) 136. Additional systematic error 2.0 pct.


A Study of the reaction e+ e- ---> mu+ mu- around the Z0 pole

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 260 (1991) 240-248, 1991.
Inspire Record 314619 DOI 10.17182/hepdata.29420

Measurements of the cross section and forward-backward asymmetry for the reaction e + e − → μ + μ − using the DELPHI detector at LEP are presented. The data come from a scan around the Z 0 peak at seven centre of mass energies, giving a sample of 3858 events in the polar angle region 22° < θ < 158°. From a fit to the cross section for 43° < θ < 137°, a polar angle region for which the absolute efficiency has been determined, the square root of the product of the Z 0 → e + e − and Z 0 → μ + μ − partial widths is determined to be (Γ e Γ μ ) 1 2 = 85.0 ± 0.9( stat. ) ± 0.8( syst. ) MeV . From this measurement of the partial width, the value of the effective weak mixing angle is determined to be sin 2 ( θ w ) = 0.2267 ± 0.0037 . The ratio of the hadronic to muon pair partial widths is found to be Γ h / Γ μ = 19.89 ± 0.40(stat.) ± 0.19(syst.). The forward-backward asymmetry at the resonance peak energy E CMS = 91.22 GeV is found to be A FB = 0.028 ± 0.020(stat.) ± 0.005(syst.). From a combined fit to the cross section and forward-backward asymmetry data, the products of the electron and muon vector and axial-vector coupling constants are determined to be V e V μ = 0.0024 ± 0.0015(stat.) ± 0.0004(syst.) and A e A μ = 0.253 ± 0.003(stat.) ± 0.003 (syst.). The results are in good agreement with the expectations of the minimal standard model.

3 data tables

Fully corrected cross sections.

Forward-backward asymmetries corrected to full solid angle, but not for cuts on momenta and acollinearity.

Effective weak mixing angle.


A Test of QCD based on three jet events from Z0 decays

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 263 (1991) 551-562, 1991.
Inspire Record 315954 DOI 10.17182/hepdata.38291

We present a study of 43 000 3-jet events from Z 0 boson decays. Both the measured jet energy distributions and the event orientation are reproduced by second order QCD. An alternative model with scalar gluons fails to describe the data.

1 data table

Jets are ordered according their energy: E1 > E2 > E3.


A Test of quantum electrodynamics in the reaction e+ e- ---> gamma gamma (gamma)

The L3 collaboration Adriani, O. ; Aguilar-Benitez, M. ; Ahlen, S. ; et al.
Phys.Lett.B 288 (1992) 404-411, 1992.
Inspire Record 336900 DOI 10.17182/hepdata.29221

We have measured the total and differential cross sections of the reaction e + e − → γγ ( γ ) at center-of-mass energies around 91 GeV, with an integrated luminosity of 14.2 pb −1 . The results are in good agreement with QED predictions. We set lower limits, at 95% confidence level, on the QED cutoff parameters of Λ + > 139 GeV, Λ − > 108 GeV and on the mass of an excited electron of m e∗ > 127 GeV . We searched for Z 0 rare decays with photonic signitures in the final state. Upper limits, at 95% confidence level, for branching ratio of Z 0 decaying into π 0 γ / γγ , νγ and γγγ are 1.2 × 10 −4 , 1.8 × 10 −4 , 3.3 × 10 −5 respectively.

3 data tables

Measured cross section for the 1991 data.

Measured cross section for the 1990 data.

Measured differential cross sections of combined 1990 and 1991 data.


A measurement of alpha(s) from the scaling violation in e+ e- annihilation.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 398 (1997) 194-206, 1997.
Inspire Record 428178 DOI 10.17182/hepdata.47581

The hadronic fragmentation functions of the various quark flavours and of gluons are measured in a study of the inclusive hadron production from Z 0 decays with the DELPHI detector and are compared with the fragmentation functions measured elsewhere at energies between 14 GeV and 91 GeV. A large scaling violation is observed, which is used to extract the strong coupling constant from a fit using a numerical integration of the second order DGLAP evolution equations. The result is α s ( M Z ) = 0.124 −0.007 +0.006 (exp) ± 0.009(theory) where the first error represents the experimental uncertainty and the second error is due to the factorization and renormalization scale dependence.

2 data tables

SIG(Q=BQ, Q=CQ, Q=UDS) corresponds to BQ, CQ, and U,D,S quarks fragmentation into charged hadron.

alpha_s was evaluated from the scaling violation of the fragmentation func tions. The data from other experiments are used for the fitting procedure.


A precise measurement of the tau polarisation at LEP-1.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 14 (2000) 585-611, 2000.
Inspire Record 511443 DOI 10.17182/hepdata.49001

The$\tau$polarisation has been studied with the${\rm e^+e^-}\to \tau^+\tau^-$data collected by the DELPHI detector at LEP in

2 data tables

The errors are statistical and systematic combined in quadrature.

No description provided.


A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 29 (2003) 285-312, 2003.
Inspire Record 620250 DOI 10.17182/hepdata.13029

Infrared and collinear safe event shape distributions and their mean values are determined in e+e- collisions at centre-of-mass energies between 45 and 202 GeV. A phenomenological analysis based on power correction models including hadron mass effects for both differential distributions and mean values is presented. Using power corrections, alpha_s is extracted from the mean values and shapes. In an alternative approach, renormalisation group invariance (RGI) is used as an explicit constraint, leading to a consistent description of mean values without the need for sizeable power corrections. The QCD beta-function is precisely measured using this approach. From the DELPHI data on Thrust, including data from low energy experiments, one finds beta_0 = 7.86 +/- 0.32 for the one loop coefficient of the beta-function or, assuming QCD, n_f = 4.75 +/- 0.44 for the number of active flavours. These values agree well with the QCD expectation of beta_0=7.67 and n_f=5. A direct measurement of the full logarithmic energy slope excludes light gluinos with a mass below 5 GeV.

71 data tables

1-THRUST distribution.

THRUST-MAJOR distribution.

THRUST-MINOR distribution.

More…