The ee -> ZZ cross section at sqrt(s)=182.7 and 188.6 GeV has been measured using the ALEPH detector. The analysis covers all of the visible ZZ final states and yields cross section measurements of sigma_ZZ(182.7 GeV) = 0.11 +- (0.16,0.11) (stat.) +- 0.04 (syst.) pb and sigma_ZZ(188.6 GeV) = 0.67 +- 0.13 (stat.) +- 0.04 (syst.) pb consistent with the Standard Model expectations.
The combined cross sections for the 2Z0 (NC2) fixed state.
The fragmentation functions of quarks and gluons are measured in various three-jet topologies in Z decays from the full data set collected with the Delphi detector at the Z resonance between 1992 and
Charged hadron XE(=Z) distributions. Durham algorithm. XISTAR is peak position in XI=LOG(-XE) distribution.
Charged hadron XE(=Z) distributions. Durham algorithm. XISTAR is peak position in XI=LOG(-XE) distribution.
Charged hadron XE(=Z) distributions. Durham algorithm. XISTAR is peak position in XI=LOG(-XE) distribution.
We have reconstructed the radiative decays $\chi_{b}(1P) \to \Upsilon(1S) \gamma $ and $\chi_{b}(2P) \to \Upsilon(1S) \gamma $ in $p \bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, and measured the fraction of $\Upsilon(1S)$ mesons that originate from these decays. For $\Upsilon(1S)$ mesons with $p^{\Upsilon}_{T}>8.0$ GeV/$c$, the fractions that come from $\chi_{b}(1P)$ and $\chi_{b}(2P)$ decays are $(27.1\pm6.9(stat)\pm4.4(sys))%$ and $(10.5\pm4.4(stat)\pm1.4(sys))%$, respectively. We have derived the fraction of directly produced $\Upsilon(1S)$ mesons to be $(50.9\pm8.2(stat)\pm9.0(sys))%$.
No description provided.
We report on measurements of the triple-gauge-boson couplings of the W boson in e+e- collisions with the L3 detector at LEP. W-pair, single-W and single-photon events are analysed in a data sample corresponding to a total luminosity of 76.7 pb^{-1} collected at centre-of-mass energies between 161 GeV and 183 GeV. CP-conserving as well as both C- and P-conserving triple-gauge-boson couplings are determined. The results, in good agreement with the Standard-Model expectations, confirm the existence of the self coupling among the electroweak gauge bosons and constrain its structure.
The errors are statistical. Two-parameter fit.
The errors are statistical. Two-parameter fit.
The errors are statistical. Two-parameter fit.
The first observation of open b production in ep collisions is reported. An event sample containing muons and jets has been selected which is enriched in semileptonic b quark decays. The visible cross section \sigma(ep -> b \bar{b}X -> \mu X') for Q^2 < 1 GeV^2, 0.1 < y < 0.8 is measured to be 0.176+-0.016(stat.)+0.026-0.017(syst.) nb for the muons to be detected in the range 35 deg < \theta^\mu < 130 deg and \pt^\mu > 2.0 GeV in the laboratory frame. The expected visible cross section based on a NLO QCD calculation is 0.104+-0.017 nb. The cross sections for electroproduction with Q^2<1 GeV^2 and photoproduction are derived from the data and found to be \sigma(ep-> e b\bar{b}X) = 7.1+-0.6(stat.)+1.5-1.3(syst.) nb and \sigma(\gamma p-> b\bar{b} X) = 111+-10(stat.)+23-20(syst.) at an average
The visible BQ BQBAR --> MUON X cross section in the stated kinematic range.
The total electroproduction and photoproduction cross sections extrapolated to the full phase space.
A precise measurement of the strange quark forward-backward asymmetry used 3.2M multihadronic events around the Z$^0$peak collected by the DELPHI experiment from 1
No description provided.
Parity violating coupling, COUPLING(NAME=A_S) = (2*V_S*A_S)/(V_S**2+A_S**2).
The inclusive charm production rate in W decays is measured from a study of the properties of final state particles. The sample of W pairs is selected from 67.7 pb −1 collected by ALEPH in 1996 and 1997 at centre-of-mass energies near 172 and 183 GeV in the channels W + W − →4q and W + W − →ℓνq q ̄ . The branching fraction of hadronic W decays to a final state containing a c quark, R W c = Γ(W→cX)/Γ(W→hadrons), is measured to be 0.51±0.05 stat ±0.03 syst . This allows a direct determination of the CKM matrix element |V cs |=1.00±0.11 stat ±0.07 syst .
VCS is the CKM matrix element.
Single and multi-photon events with missing energy are analysed using data collected with the L3 detector at LEP at a centre-of-mass energy of 189 GeV, for a total of 176 pb^{-1} of integrated luminosity. The cross section of the process e+e- -> nu nu gamma (gamma) is measured and the number of light neutrino flavours is determined to be N_\nu = 3.011 +/- 0.077 including lower energy data. Upper limits on cross sections of supersymmetric processes are set and interpretations in supersymmetric models provide improved limits on the masses of the lightest neutralino and the gravitino. Graviton-photon production in low scale gravity models with extra dimensions is searched for and limits on the energy scale of the model are set exceeding 1 TeV for two extra dimensions.
No description provided.
A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.
Measured cross section within the kinematic and geometric cuts. THETA(C=GAMMA) is the angle between the photon and the closest jet, and THETA(C=LEPTON) is the angle between the photon and the lepton.
95 PCT confidence limits on possible anomalous contributions.
The production of the J/ ψ and ψ ′ charmonia states has been studied, through their dimuon decay, in proton, Oxygen and Sulphur induced reactions, by the NA38 experiment at the CERN SPS. The proton data was collected with beams of 200 and 450 GeV, while the ion beams had an energy of 200 GeV per incident nucleon. The J/ ψ production cross-section per nucleon-nucleon collision exhibits a remarkably continuous pattern, as a function of the product of the mass numbers of the interacting nuclei, from pp up to S-U reactions. The same pattern is observed within S-U collisions, as a function of the collision centrality. While in p-A interactions both charmonia states exhibit the same A-dependence, in S-U collisions the ψ ′ production is very strongly suppressed.
Results of fitting the 200 and 450 GeV J/PSI data separately with a power law parametrization SIG=SIG0*(A*B)**POWER, where A and B are the beam and targetmass numbers. The value obtained from a combined fit is also given, as well as the ratio between the values of SIG0 for the 200 and 450 GeV data sets.
The J/PSI cross sections per nucleon (times the BR to di-muons) rescaled to 200 GeV/nucleon, using the SIG0 ratio detemined in the previous table, and to the cm rapidity window 0 to 1. The errors are combined statistical and systematic.
The ratio between the PSI(3685) and the J/PSI production cross section, times their BR into di-muons, at an incident beam energy of 450 GeV per nucleon. The errors are combined statistical and systematic.