Date

Charged particle multiplicity distributions in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 50 (1991) 185-194, 1991.
Inspire Record 301657 DOI 10.17182/hepdata.15028

This paper presents an analysis of the multiplicity distributions of charged particles produced inZ0 hadronic decays in the DELPHI detector. It is based on a sample of 25364 events. The average multiplicity is <nch>=20.71±0.04(stat)±0.77(syst) and the dispersionD=6.28±0.03(stat)±0.43(syst). The data are compared with the results at lower energies and with the predictions of phenomenological models. The Lund parton shower model describes the data reasonably well. The multiplicity distributions show approximate KNO-scaling. They also show positive forward-backward correlations that are strongest in the central region of rapidity and for particles of opposite charge.

5 data tables

Charged particle multiplicity distribution for the raw data in full phase space.

Charged particle multiplicity distribution for full phase space. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included. The first two points, at N=2 and 4, were not measured but taken from the Lund PS model.

Charged particle multiplicity distribution for single hemisphere. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included.

More…

Experimental study of the triple gluon vertex

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 255 (1991) 466-476, 1991.
Inspire Record 301659 DOI 10.17182/hepdata.48514

In four-jet events from e + e − →Z 0 →multihadrons one can separate the three principal contributions from the triple-gluon vertex, double gluon-bremsstrahlung and the secondary quark-antiquark production, using the shape of the two-dimensional angular distributions in the generalized Nachtmann-Reiter angle θ NR ∗ and the opening angle of the secondary jets. Thus one can identify directly the contribution from the triple-gluon vertex without comparison with a specific non-QCD model. Applying this new method to events taken with the DELPHI-detector we get for the ratio of the colour factor N c to the fermionic Casimir operator C F : N c C F = 2.55 ± 0.55 ( stat. ) ± 0.4 ( fragm. + models ) ± 0.2 ( error in bias ) in agreement with the value 2.25 expected in QCD from N c =3 and C F = 4 3 .

1 data table

NC, CF, and TR are the color factors for SU(3) group.


J / psi and psi-prime production at the CERN p anti-p collider

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Phys.Lett.B 256 (1991) 112-120, 1991.
Inspire Record 300862 DOI 10.17182/hepdata.26999

We have measured the production cross-section times branching ratio for J/ψ→μ + μ − in pp̄ interactions at √ s = 630 GeV in the kinematic range |y|<2.0 and p T >5 GeV /c, BR ( J /ψ→μ + μ − )σ( p p ̄ → J /ψ)=6.18±0.24±0.81 nb . The data sample collected in 1988 and 1989 for an integrated luminosity of 4.7 pb −1 represents a fivefold improvement over the statistics in our earlier study of the J / ψ production process, and the p T distribution which is measured extends to 28 GeV / c . Using event topology we show that the rate for the direct production of J / ψ , via radiative decays of χ states, is larger than that for production via B-hadrons. Production of ψ′ is also studied using the decay modes < ψ ′→ μ + μ − and ψ ′→ J / ψπ + ψ − .

4 data tables

Numerical values supplied by Nick Ellis.

More…

A Study of the recombination scheme dependence of jet production rates and of alpha-s (m(Z0)) in hadronic Z0 decays

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 49 (1991) 375-384, 1991.
Inspire Record 299833 DOI 10.17182/hepdata.15085

The error includes the experimental uncertainties (±0.003), uncertainties of hadronisation corrections and of the degree of parton virtualities to which the data are corrected, as well as the uncertainty of choosing the renormalisation scale.

9 data tables

Jet production rates using the E0 recombination scheme.

Jet production rates using the E recombination scheme.

Jet production rates using the p0 recombination scheme.

More…

Photoproduction of D Mesons

The E-687 collaboration Buchholz, D. ; Frabetti, P.L. ; Bogart, C.W. ; et al.
FERMILAB-FN-0555, 1990.
Inspire Record 300996 DOI 10.17182/hepdata.43002

Preliminary results are presented using the Wide Band photon beam at Fermilab to measure the cross-section of $D^{*\pm}$ and $D^{\pm}$ photoproduction on a Be target over the photon energy range from 100 GeV to 350 GeV....

3 data tables

INCLUDES THE FOLLOWING DECAYS: D*(2010)+- --> D0 PI+-, D0 --> K- PI+.

INCLUDES THE FOLLOWING DECAYS: D*(2010)+- --> D0 PI+-, D0 --> K- PI+, D0 --> K- 2PI+ PI-.

INCLUDES THE DECAYS: D+ --> K- 2PI+.


Beauty production at the CERN p anti-p collider

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Phys.Lett.B 256 (1991) 121-128, 1991.
Inspire Record 302583 DOI 10.17182/hepdata.48531

We report measurements of b-quark and B-hadron production in pp̄ collisions at √ s =630 GeV. We use muon samples to extract beauty production cross-sections over a wide range of transverse momentum in the central rapidity range | y | < 1.5. We compare our results to an O(α s 3 ) QCD prediction and find good agreement over the measured b-quark transverse momentum range 6 GeV / c to 54 GeV / c . Using the shape of the p T and y distribution predicted by QCD to extrapolate our data, we infer a total cross-section for b-quark production at √s=630 GeV of σ( p p ̄ → b b ̄ + X )=19.3±7( exp. )±9( th. μ b .

10 data tables

No description provided.

The cross section is multipled on the B(J/PSI --> MU+ MU-).

No description provided.

More…

Measurement of the ratio R = sigma(w) Br (W) ---> mu neutrino) / sigma(Z) Br (Z ---> mu mu) and gamma(W) total at the CERN proton - anti-proton collider

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Phys.Lett.B 253 (1991) 503-510, 1991.
Inspire Record 300863 DOI 10.17182/hepdata.29508

An analysis of W and Z boson production at UA1, using 4.66 pb −1 of data from the 1988 and 1989 CERN p p Collider runs at s =0.63 TeV , yields R ≡ σ W Br(W→ μ v)/ σ z Br( Z → μμ )=10.4 −1.5 +1.8 stat.±0.8(syst.) We find R =9.5 −1.0 +1.1 (stat.+syst.) when combining all available UA1 data, in both the electron and muon channel, taken in the period 1983–1989. In the framework of the standard model, the value of R is used to infer the total width of the W boson, Γ W tot =2.18 −0.24 +0.26 (exp.)±0.04(theory) GeV/ c 2 .

1 data table

No description provided.


Measurement of the transverse energy flow in nucleus-nucleus collisions at 200-GeV per nucleon

The HELIOS collaboration Åkesson, T. ; Almehed, S. ; Angelis, A.L.S. ; et al.
Nucl.Phys.B 353 (1991) 1-19, 1991.
Inspire Record 299861 DOI 10.17182/hepdata.33034

The transverse energy distributions have been measured for interactions of 32 S nuclei with Al, Ag, W, Pt, Pb, and U targets, at an incident energy of 200 GeV per nucleon in the pseudorapidity region −0.1 < ν lab < 5.5. These distributions are compared with those for 16 OW interactions in the same pseudorapidity region and with earlier measurements performed with 16 O and 32 S projectiles in the region −0.1 < ν lab < 2.9. These comparisons provide both a better understanding of the dynamics involved and improved estimates of stopping power and energy density.

7 data tables

No description provided.

No description provided.

No description provided.

More…

Energy-energy correlations in hadronic final states from Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 252 (1990) 149-158, 1990.
Inspire Record 300161 DOI 10.17182/hepdata.29534

We have studied the energy-energy angular correlations in hadronic final states from Z 0 decay using the DELPHI detector at LEP. From a comparison with Monte Carlo calculations based on the exact second order QCD matrix element and string fragmentation we find that Λ (5) MS =104 +25 -20 ( stat. ) +25 -20( syst. ) +30 00 ) theor. ) . MeV, which corresponds to α s (91 GeV)=0.106±0.003(stat.)±0.003(syst.) +0.003 -0.000 (theor). The theoretical error stems from different choices for the renormalization scale of α s . In the Monte Carlo simulation the scale of α s as well as the fragmentation parameters have been optimized to described reasonably well all aspects of multihadron production.

2 data tables

Data requested from the authors.

Values of LAMBDA-MSBAR(5) and ALPHA-S(91 GeV) deduced from the EEC measurements. The second systematic error is from the theory.


A Measurement of energy correlations and a determination of alpha-s (M2 (Z0)) in e+ e- annihilations at s**(1/2) = 91-GeV

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 252 (1990) 159-169, 1990.
Inspire Record 298707 DOI 10.17182/hepdata.29525

From an analysis of multi-hadron events from Z 0 decays, values of the strong coupling constant α s ( M 2 Z 0 )=0.131±0.006 (exp)±0.002(theor.) and α s ( M z 0 2 ) = −0.009 +0.007 (exp.) −0.002 +0.006 (theor.) are derived from the energy-energy correlation distribution and its asymmetry, respectively, assuming the QCD renormalization scale μ = M Z 0 . The theoretical error accounts for differences between O ( α 2 s ) calculations. A two parameter fit Λ MS and the renormalization scale μ leads to Λ MS =216±85 MeV and μ 2 s =0.027±0.013 or to α s ( M 2 Z 0 )=0.117 +0.006 −0.008 (exp.) for the energy-energy correlation distribution. The energy-energy correlation asymmetry distribution is insensitive to a scale change: thus the α s value quoted above for this variable includes the theoretical uncertainty associated with the renormalization scale.

3 data tables

Data are at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Note that the systematic errors between bins are correlated.

Alpha-s determined from the EEC measurements. The systematic error is an error in the theory.

Alpha-s determined from the AEEC measurements. The systematic error is an error in the theory.