The deep-inelastic electromagnetic structure functions of steel, deuterium, and hydrogen nuclei have been measured with use of the high-energy electron beam at the Stanford Linear Accelerator Center. The ratio of the structure functions of steel and deuterium cannot be understood simply by corrections due to Fermi-motion effects. The data indicate that the quark momentum distributions in the nucleon become distorted in the nucleus. The present results are consistent with recent measurements with high-energy muon beams.
No description provided.
Inclusive neutrino and antineutrino charged current interactions were studied in the CHARM detector exposed to neutrino and antineutrino Wide Band Beams of the CERN 400 GeV SPS. The x and Q 2 dependence of the structure functions F 2 and xF 3 and of the antiquark momentum distribution q were determined. The data have been interpreted in terms of QCD theory using the Furmanski-Petronzio method. In this way we have determined Λ LO = [190 −40 +70 ( stat ) ± 70 ( syst .)] MeV and the structure functions of quarks and gluons without specific assumptions on their analytic dependence. The results agree with previous experiments which relied on model assumptions in the analysis. We conclude that the model independent simultaneous analysis of the xF 3 , F 2 , q structure functions gives a more reliable determination of the gluon distribution in the nucleon.
No description provided.
HERE THE QBAR IS D2(SIG(ANU))/DX/DY - (1-Y)**2*D2(SIG(NU))/DX/DY.
Exposures of the Ne/H 2 filled Big European Bubble Chamber (BEBC) to a dichromatic neutrino (antineutrino) beam produced by 400 GeV protons of the CERN SPS yielded ∼ 3100 events with a negative, and ∼ 1100 with a positive, muon. The neutrino flux is determined from the muon flux in the shielding. Assuming a linear energy dependence of the cross section, the values σ E between 20 and 200 GeV are found to be 0.657 ± 0.012 (stat.) ± 0.027 (syst.) and 0.309 ± 0.009 (stat.) ± 0.013 (syst.) cm 2 (GeV nucleon) −1 , for neutrinos and antineutrinos, respectively. The scaling variable q 2 E decreases significantly with increasing energy both for neutrinos and antineutrinos.
Measured charged current total cross section.
Measured charged current total cross section.
No description provided.
None
No description provided.
No description provided.
We have measured the inclusive cross section for η production in e+e− interactions near charm threshold using the Crystal Ball detector. No pronounced structure in the energy dependence is observed. By comparing cross sections above and below charm threshold we obtain the limits (90% confidence limit): R(e+e−→FF¯X)RB(F→ηx)<0.15−0.32 (for Ec.m. from 4.0 to 4.5 GeV), RB(D→ηx)<0.13. Our results are inconsistent with a previous report of a large energy dependence of the η cross section ascribed to the crossing of the FF* and F*F* production thresholds.
Axis error includes +- 0.0/0.0 contribution (?////DECAY PI0 --> 2GAMMA//RES-DEF(RES=ETA,BACK=CORRECTED,DEF=340 < M( 2GAMMA ) < 800 MEV)//DECAY-BR(BRN=ETA --> 2GAMMA,BR=38 PCT)).
THE 4.028 GEV DATA ARE NOT INCLUDED IN THE 4.005-4.082 GEV BIN. Axis error includes +- 0.0/0.0 contribution (?////DECAY PI0 --> 2GAMMA//RES-DEF(RES=ETA,BACK=CORRECTED,DEF=340 < M( 2GAMMA ) < 800 MEV)//DECAY-BR(BRN=ETA --> 2GAMMA,BR=38 PCT)).
AT FIXED ENERGIES.
The average transverse momentum squared, 〈 p ⊥ 2 〉, of hadrons is studied as a function of W 2 and of Q 2 for ν and ν interactions on an isoscalar target. An increase of 〈 p ⊥ 2 〉 with W 2 is observed for the hadrons emitted forward in the hadronic c.m.s. The p ⊥ dependence of the fragmentation function is found to factorise from the structure function at fixed W , but does not factorise at fixed Q 2 . Unlike the case of forward-going particles, the 〈 p ⊥ 2 〉 of hadrons going backward in the c.m.s. shows no strong dependence on W 2 .
No description provided.
No description provided.
No description provided.
Cross sections for ρ0 electroproduction measured in a streamer-chamber experiment are separated into elastic (ep→epρ0) and inelastic production channels. For the elastic channel, the total cross section and t dependence are presented. For the inelastic channel (1σ)dσdz, (1σ)dσdpT2, and a density matrix element are shown and compared to quark-parton-model predictions. The ratio of ρ0 to direct π0 production is found to be 2.0±0.5±0.3, where the first error is statistical, and the second error is systematic.
No description provided.
No description provided.
No description provided.
We have carried out an experimental study of the neutron and proton deep-inelastic electromagnetic structure functions. The structure functions were extracted from electron-proton and electron-deuteron differential cross sections measured in three experiments spanning the angles 6°, 10°, 15°, 18°, 19°, 26°, and 34°. We report primarily on the large-angle (15°-34°) measurements. Neutron cross sections were extracted from the deuteron data using an impulse approximation. Our results are consistent with the hypothesis that the nucleon is composed of pointlike constituents. The variation of the cross section with angle suggests that the hypothetical constituents have spin ½. The data for σnσp, the ratio of the neutron and proton differential cross sections, are in the range 0.25 to 1.0, and are within the limits imposed by the quark model. Detailed studies of the structure functions were made for a range of the scaling variable ω from ω=1.3 to ω=10.0, and for a range of invariant four-momentum transfer Q2 from 1.0 to 20.0 GeV2. These studies indicate that the structure functions approximately scale in the variable ω, although significant deviations from scaling in ω are apparent in the region 1.3<ω<3.3. These deviations from scaling are in the same direction and of similar magnitude for both neutron and proton. The interpretation of the data in terms of various theoretical models is discussed.
No description provided.
No description provided.
No description provided.
This paper presents results of an experiment on hadron production in deep-inelastic electron scattering. Good agreement with the predictions of the quark-parton model is found. The Fragmentation functions for u and d quarks into pions are determined, and comparison is made with other deep-inelastic processes and with recent quark jet parametrizations.
No description provided.
We present results for the differential cross sections of neutrinos and antineutrinos on nucleons in the energy range E = 2−200 GeV, from the BEBC and Gargamelle experiments. The structure functions F 2 , 2 χF 1 and χF 3 have been evaluated as a function of χ and q 2 . Deviations are observed from Bjorken scaling, which are very similar to those found in electron and muon inelastic scattering. For the Callan-Gross ratio, we find 2χF 1 F 2 = 0.80 ± 0.12 and the corresponding value for 〈R〉 = 〈 σ S σ T 〉 = 0.15 ± 0.10 . Our results are consistent with the Gross-Llewellyn-Smith sum rule; we measure ⩾2.5 ± 0.5 valence quarks per nucleon. Quark and antiquark distributions are given. The Nachtmann moments of F 2 and χF 3 are quantitatively consistent with the predictions from QCD. The value of the strong interaction parameter is λ = 0.74 ± 0.05 GeV without corrections, and 0.66 ± 0.05 GeV including α S 2 corrections. The moments of the gluon distribution are found to be positive and indicate an χ distribution of gluons which is comparable with that of the valence quarks.
No description provided.
No description provided.