Nuclear modification factor for charged pions and protons at forward rapidity in central Au + Au collisions at 200-GeV.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 650 (2007) 219-223, 2007.
Inspire Record 729167 DOI 10.17182/hepdata.89447

We present spectra of charged pions and protons in 0-10% central Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV at mid-rapidity ($y=0$) and forward pseudorapidity ($\eta=2.2$) measured with the BRAHMS experiment at RHIC. The spectra are compared to spectra from p+p collisions at the same energy scaled by the number of binary collisions. The resulting nuclear modification factors for central Au+Au collisions at both $y=0$ and $\eta=2.2$ exhibit suppression for charged pions but not for (anti-)protons at intermediate $p_T$. The $\bar{p}/\pi^-$ ratios have been measured up to $p_T\sim 3$ GeV/$c$ at the two rapidities and the results indicate that a significant fraction of the charged hadrons produced at intermediate $p_T$ range are (anti-)protons at both mid-rapidity and $\eta = 2.2$.

17 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

More…

Centrality dependence of pi0 and eta production at large transverse momentum in s(NN)**(1/2) = 200-GeV d + Au collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 172302, 2007.
Inspire Record 729950 DOI 10.17182/hepdata.141813

The dependence of transverse momentum spectra of neutral pions and eta mesons with p_T <16 GeV/c and p_T < 12 GeV/c, respectively, on the centrality of the collision has been measured at mid-rapidity by the PHENIX experiment at RHIC in d+Au collisions at sqrt(s_(NN)) = 200 GeV. The measured yields are compared to those in p + p collisions at the same sqrt(s_(NN)) scaled by the number of underlying nucleon-nucleon collisions in d+Au. At all centralities the yield ratios show no suppression, in contrast to the strong suppression seen for central Au+Au collisions at RHIC. Only a weak p_T and centrality dependence can be observed.

10 data tables

Invariant yields at mid-rapidity for $\pi^0$ and $\eta$ in $d$+Au collisions as a function of $p_T$ for different centrality selections.

Invariant yields at mid-rapidity for $\pi^0$ and $\eta$ in $d$+Au collisions as a function of $p_T$ for different centrality selections.

Invariant yields at mid-rapidity for $\pi^0$ and $\eta$ in $d$+Au collisions as a function of $p_T$ for different centrality selections.

More…

Measurement of single muons at forward rapidity in p + p collisions at s**(1/2) = 200-GeV and implications for charm production.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 76 (2007) 092002, 2007.
Inspire Record 726260 DOI 10.17182/hepdata.63824

Muon production at forward rapidity (1.5 < |\eta| < 1.8) has been measured by the PHENIX experiment over the transverse momentum range 1 < p_T \le 3 GeV/c in sqrt(s) = 200 GeV p+p collisions at the Relativistic Heavy Ion Collider. After statistically subtracting contributions from light hadron decays an excess remains which is attributed to the semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks. The resulting muon spectrum from heavy flavor decays is compared to PYTHIA and a next-to-leading order perturbative QCD calculation. PYTHIA is used to determine the charm quark spectrum that would produce the observed muon excess. The corresponding differential cross section for charm quark production at forward rapidity is determined to be d\sigmac c^bar)/dy|_(y=1.6)=0.243 +/- 0.013 (stat.) +/- 0.105 (data syst.) ^(+0.049(-0.087) (PYTHIA syst.) mb.

1 data table

Differential charm cross section at forward rapidity of 1.6 An additional +0.049 -0.087 systematic uncertainty associated with the PYTHIA normalization is not included in the values given.


Anisotropy in the pion angular distribution of the reaction pp -> pp pi0 at 400 MeV

Thorngren Engblom, P. ; Negasi Keleta, S. ; Cappellaro, F. ; et al.
Phys.Rev.C 76 (2007) 011602, 2007.
Inspire Record 725409 DOI 10.17182/hepdata.31500

The reaction pp -> pp pi0 was studied with the WASA detector at the CELSIUS storage ring. The center of mass angular distribution of the pi0 was obtained by detection of the gamma decay products together with the two outgoing protons, and found to be anisotropic with a negative second derivative slope, in agreement with the theoretical predictions from a microscopic calculation.

2 data tables

Acceptance corrected centre of mass PI0 angular distribution, normalized to 92.3 +- 7.2 MUB (Bilger et al.).

Acceptance corrected centre of mass PI0 angular distribution for relative proton momenta < 53 MeV, normalized to Bilger et al... Statistical errors only.


A study of gamma gamma -> Ks Ks production at energies of 2.4-4.0GeV at Belle

The Belle collaboration Chen, W.T. ; Abe, Kazuo ; Abe, K. ; et al.
Phys.Lett.B 651 (2007) 15-21, 2007.
Inspire Record 726900 DOI 10.17182/hepdata.38419

$K^0_SK^0_S$ production in two-photon collisions has been studied using a 397.6 fb$^{-1}$ data sample collected with the Belle detector at the KEKB $e^+e^-$ collider. For the first time the cross sections are measured in the two-photon center-of-mass energy range between 2.4 GeV and 4.0 GeV and angular range $|\cos\theta^*|<0.6$. Combining the results with measurements of $\gamma\gamma\to K^+K^-$ from Belle, we observe that the cross section ratio $\sigma(K^0_SK^0_S)/\sigma(K^+K^-)$ decreases from ~0.13 to ~0.01 with increasing energy. Signals for the $\chi_{c0}$ and $\chi_{c2}$ charmonium states are also observed.

7 data tables

Total cross section for the process GAMMA GAMMA --> K0S K0S.

Angular distribution of the cross section in the W range 2.4 to 2.5 GeV.

Angular distribution of the cross section in the W range 2.5 to 2.6 GeV.

More…

Precise determination of the spin structure function g(1) of the proton, deuteron and neutron.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Phys.Rev.D 75 (2007) 012007, 2007.
Inspire Record 726689 DOI 10.17182/hepdata.11211

Precise measurements of the spin structure functions of the proton $g_1^p(x,Q^2)$ and deuteron $g_1^d(x,Q^2)$ are presented over the kinematic range $0.0041 \leq x \leq 0.9$ and $0.18 $ GeV$^2$ $\leq Q^2 \leq 20$ GeV$^2$. The data were collected at the HERMES experiment at DESY, in deep-inelastic scattering of 27.6 GeV longitudinally polarized positrons off longitudinally polarized hydrogen and deuterium gas targets internal to the HERA storage ring. The neutron spin structure function $g_1^n$ is extracted by combining proton and deuteron data. The integrals of $g_1^{p,d}$ at $Q^2=5$ GeV$^2$ are evaluated over the measured $x$ range. Neglecting any possible contribution to the $g_1^d$ integral from the region $x \leq 0.021$, a value of $0.330 \pm 0.011\mathrm{(theo.)}\pm0.025\mathrm{(exp.)}\pm 0.028$(evol.) is obtained for the flavor-singlet axial charge $a_0$ in a leading-twist NNLO analysis.

23 data tables

Integrals of G1 for P, DEUT and N targets.. The second DSYS systematic error is due to the uncertainty in the parameterizations (R, F2, A2, Azz, omegaD).. The third DSYS systematic error is due to the uncertainty in evolving to a common Q**2.

Integrals of G1 for the Non-Singlet contributions.. The second DSYS systematic error is due to the uncertainty in the parameterizations (R, F2, A2, Azz, omegaD).. The third DSYS systematic error is due to the uncertainty in evolving to a common Q**2. Axis error includes +- 5.2/5.2 contribution.

Integrals of G1 over different X ranges for P target at various Q*2 values. The second DSYS systematic error is due to the uncertainty in the parameterizations (R, F2, A2, Azz, omegaD).. The third DSYS systematic error is due to the uncertainty in evolving to a common Q**2. Axis error includes +- 5.2/5.2 contribution.

More…

The Deuteron Spin-dependent Structure Function g1d and its First Moment

The COMPASS collaboration Alexakhin, V.Yu. ; Alexandrov, Yu. ; Alexeev, G.D. ; et al.
Phys.Lett.B 647 (2007) 8-17, 2007.
Inspire Record 726688 DOI 10.17182/hepdata.48555

We present a measurement of the deuteron spin-dependent structure function g1d based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for Gamma_1^d, the first moment of g1d(x), and for the matrix element of the singlet axial current, a0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function Delta G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3 (GeV/c)^2 the first moment of Delta G is found to be of the order of 0.2 - 0.3 in absolute value.

1 data table

Measured values of A1 and G1 at mean values of X, Q**2.. For the first two data points the minimum Q**2 cut was reduced from 1 to 0.7 GeV**2.


A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target

The COMPASS collaboration Ageev, E.S. ; Alexakhin, V.Yu. ; Alexandrov, Yu. ; et al.
Nucl.Phys.B 765 (2007) 31-70, 2007.
Inspire Record 729695 DOI 10.17182/hepdata.48535

New high precision measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarised 6LiD target are presented. The data were taken in 2003 and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible with zero, within the present statistical errors, which are more than a factor of 2 smaller than those of the published COMPASS results from the 2002 data. The final results from the 2002, 2003 and 2004 runs are compared with naive expectations and with existing model calculations.

24 data tables

Collins asymmetry against PT for all negative hadrons.

Collins asymmetry against Bjorken X for all negative hadrons.

Collins asymmetry against Z for all negative hadrons.

More…

Measurement of high-p(T) single electrons from heavy-flavor decays in p + p collisions at s**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 97 (2006) 252002, 2006.
Inspire Record 725484 DOI 10.17182/hepdata.57283

The momentum distribution of electrons from decays of heavy flavor (charm and beauty) for midrapidity |y| < 0.35 in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 0.3 < p_T < 9 GeV/c. Two independent methods have been used to determine the heavy flavor yields, and the results are in good agreement with each other. A fixed-order-plus-next-to-leading-log pQCD calculation agrees with the data within the theoretical and experimental uncertainties, with the data/theory ratio of 1.72 +/- 0.02^stat +/- 0.19^sys for 0.3 < p_T < 9 GeV/c. The total charm production cross section at this energy has also been deduced to be sigma_(c c^bar) = 567 +/- 57^stat +/- 224^sys micro barns.

3 data tables

Heavy-flavor decay electrons invariant differential cross-section An additional 10% normalization uncertainty is to add.

Differential charm cross section To obtain this value, the differential "charm-decay" electrons cross-section, integrated over PT>0.4 GeV/c, has been extrapolated down to PT=0 using the spectrum shape predicted by a fixed-order-plus-next-to-leading-log (FONLL)calculation. The contribution from beauty and beauty cascades, estimated to be 0.1 microbarn, has been substracted, and the c->e branching ratio used was 9.5 +- 1.0%.

Total charm cross section To obtain the total charm cross section, the differential charm cross section has been extrapolated to the whole rapidity range, using a HVQMNR rapidity distribution with aCTEQ5M PDF.


Rapidity and species dependence of particle production at large transverse momentum for d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Abelev, B.I. ; Adams, J. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 76 (2007) 054903, 2007.
Inspire Record 726101 DOI 10.17182/hepdata.101349

We determine rapidity asymmetry in the production of charged pions, protons and anti-protons for large transverse momentum (pT) for d+Au collisions at \sqrt s_NN = 200 GeV. The identified hadrons are measured in the rapidity regions |y| < 0.5 and 0.5 < |y| < 1.0 for the pT range 2.5 < pT < 10 GeV/c. We observe significant rapidity asymmetry for charged pion and proton+anti-proton production in both rapidity regions. The asymmetry is larger for 0.5 < |y| < 1.0 than for |y|< 0.5 and is almost independent of particle type. The measurements are compared to various model predictions employing multiple scattering, energy loss, nuclear shadowing, saturation effects, and recombination, and also to a phenomenological parton model. We find that asymmetries are sensitive to model parameters and show model-preference. The rapidity dependence of \pi^{-}/\pi^{+} and \bar{p}/p ratios in peripheral d+Au and forward neutron-tagged events are used to study the contributions of valence quarks and gluons to particle production at high pT. The results are compared to calculations based on NLO pQCD and other measurements of quark fragmentation functions.

15 data tables

High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.

High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.

High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.

More…