Experimental Study of the Nucleon Longitudinal Structure Function in Charged Current Neutrino and Anti-neutrinos Interactions

The CHARM collaboration Bergsma, F. ; Dorenbosch, J. ; Jonker, M. ; et al.
Phys.Lett.B 141 (1984) 129-132, 1984.
Inspire Record 199418 DOI 10.17182/hepdata.30554

The x dependence of the longitudinal structure function F L was determined with the CHARM neutrino detector exposed to neutrino and antineutrino wide-band beams of the CERN 400 GeV SPS. The results show a clear deviation from the Callan-Gross relation. The amount and the x dependence of this deviation are in agreement with the contribution coming from a finite transverse momentum of the partons in the nucleon if both the intrinsc and perturbative QCD terms are taken into account.

1 data table

VALUES OF Q**2 FOR EACH POINT IN THE TABLE ARE:- 0.76,3.0,9.3,16.6,18.9.


A Precise Determination of the Electroweak Mixing Angle from Semileptonic Neutrino Scattering

The CHARM collaboration Allaby, J.V. ; Amaldi, U. ; Barbiellini, G. ; et al.
Z.Phys.C 36 (1987) 611, 1987.
Inspire Record 249672 DOI 10.17182/hepdata.15697

The cross-section ratio of neutral-current and charged-current semileptonic interactions of muon-neutrinos on isoscalar nuclei has been measured with the result:Rv=0.3093±0.0031 for hadronic energy larger than 4 GeV. From this ratio we determined the electroweak mixing angle sin2θW, wheremc is the charm-quark mass in GeV/c2. Comparison with direct measurements ofmw andmz determines the radiative shift of the intermediate boson mass Δr=0.077±0.025(exp.)±0.038(syst.), in agreement with the prediction. Assuming the validity of the electroweak standard theory we determined ϱ=0.990−0.013(mc−1.5)±0.009(exp.)±0.003(theor.).

3 data tables

No description provided.

No description provided.

STATISTICAL ERROR IN THE VALUE CITED IS REDUCING, WHEN CUT IS MORE STRINGENT?.


Experimental Study of X Distributions in Semileptonic Neutral Current Neutrino and Anti-neutrino Reactions

The CHARM collaboration Allaby, J.V. ; Amaldi, U. ; Barbiellini, G. ; et al.
Phys.Lett.B 213 (1988) 554-561, 1988.
Inspire Record 264997 DOI 10.17182/hepdata.29877

Using the CHARM detector 36 000 deep inelastic neutral-current reactions of neutrinos (and 2000 of antineutrinos) from the 160 GeV narrow-band beam were recorded. The differential cross section d σ d x in the Bjorken scaling variable x was computed by unfolding the effects of limited acceptance and of resolution of the detector as well as the ambiguity of the energy of the incoming neutrinos (produced by π- or K-decay). Combining the results from the neutrino and antineutrino data, the structure functions F 2 and xF 3 and the antiquark momentum distribution measured via the NC coupling were determined. The distributions are in agreement with the corresponding CC distibutions. Comparisons with deep inelastic muon scattering confirm the universality of nuclear structure functions as probed by the weak and the electromagnetic currents.

1 data table

SEE THE PAPER FOR THE PRECISE DEFNS OF F(+), F(-).


Experimental Study of the Nucleon Structure Functions and of the Gluon Distribution from Charged Current Neutrino and anti-neutrinos Interactions

The CHARM collaboration Bergsma, F. ; Dorenbosch, J. ; Jonker, M. ; et al.
Phys.Lett.B 123 (1983) 269, 1983.
Inspire Record 181908 DOI 10.17182/hepdata.30729

Inclusive neutrino and antineutrino charged current interactions were studied in the CHARM detector exposed to neutrino and antineutrino Wide Band Beams of the CERN 400 GeV SPS. The x and Q 2 dependence of the structure functions F 2 and xF 3 and of the antiquark momentum distribution q were determined. The data have been interpreted in terms of QCD theory using the Furmanski-Petronzio method. In this way we have determined Λ LO = [190 −40 +70 ( stat ) ± 70 ( syst .)] MeV and the structure functions of quarks and gluons without specific assumptions on their analytic dependence. The results agree with previous experiments which relied on model assumptions in the analysis. We conclude that the model independent simultaneous analysis of the xF 3 , F 2 , q structure functions gives a more reliable determination of the gluon distribution in the nucleon.

2 data tables

No description provided.

HERE THE QBAR IS D2(SIG(ANU))/DX/DY - (1-Y)**2*D2(SIG(NU))/DX/DY.


Total Cross-sections of Charged Current Neutrino and Anti-neutrino Interactions on Isoscalar Nuclei

The CHARM collaboration Allaby, J.V. ; Amaldi, U. ; Barbiellini, G. ; et al.
Z.Phys.C 38 (1988) 403-410, 1988.
Inspire Record 252954 DOI 10.17182/hepdata.15652

New measurements of the total crosssections of charged-current interactions of muonneutrinos and antineutrinos on isoscalar nuclei have been performed. Data were recorded in an exposure of the CHARM d

2 data tables

No description provided.

No description provided.


A Test of the flavor independence of strong interactions

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 53 (1996) 2271-2275, 1996.
Inspire Record 382002 DOI 10.17182/hepdata.22341

We present a comparison of the strong couplings of light ($u$, $d$, and $s$), $c$, and $b$ quarks determined from multijet rates in flavor-tagged samples of hadronic $Z~0$ decays recorded with the SLC Large Detector at the SLAC Linear Collider. Flavor separation on the basis of lifetime and decay multiplicity differences among hadrons containing light, $c$, and $b$ quarks was made using the SLD precision tracking system. We find: $\alpha_s{_{\vphantom{y}}}~{uds}/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 0.987 \pm 0.027({\rm stat}) \pm 0.022({\rm syst}) \pm 0.022({\rm theory})$, $\alpha_s{_{\vphantom{y}}}~c/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.012 \pm 0.104 \pm 0.102 \pm 0.096$, and $\alpha_s{_{\vphantom{y}}}~b/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.026 \pm 0.041 \pm 0.041\pm 0.030.$

1 data table

No description provided.


Measurement of alpha-s (M(Z)**2) from hadronic event observables at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 51 (1995) 962-984, 1995.
Inspire Record 378545 DOI 10.17182/hepdata.22450

The strong coupling alpha_s(M_Z^2) has been measured using hadronic decays of Z^0 bosons collected by the SLD experiment at SLAC. The data were compared with QCD predictions both at fixed order, O(alpha_s^2), and including resummed analytic formulae based on the next-to-leading logarithm approximation. In this comprehensive analysis we studied event shapes, jet rates, particle correlations, and angular energy flow, and checked the consistency between alpha_s(M_Z^2) values extracted from these different measures. Combining all results we obtain alpha_s(M_Z^2) = 0.1200 \pm 0.0025(exp.) \pm 0.0078(theor.), where the dominant uncertainty is from uncalculated higher order contributions.

16 data tables

Final average value of alpha_s. The second (DSYS) error is from the uncertainty on the theoretical part of the calculation.

TAU is 1-THRUST.

RHO is the normalized heavy jet mass MH**2/EVIS**2.

More…

Comparison of a new calculation of energy-energy correlations with e+ e- ---> hadrons data at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
Phys.Rev.D 52 (1995) 4240-4244, 1995.
Inspire Record 39718 DOI 10.17182/hepdata.22336

We have compared a new QCD calculation by Clay and Ellis of energy-energy correlations (EEC’s) and their asymmetry (AEEC’s) in e+e− annihilation into hadrons with data collected by the SLD experiment at SLAC. From fits of the new calculation, complete at O(αs2), we obtained αs(MZ2)=0.1184±0.0031(expt)±0.0129(theory) (EEC) and αs(MZ2)=0.1120±0.0034(expt)±0.0036(theory) (AEEC). The EEC result is significantly lower than that obtained from comparable fits using the O(αs2) calculation of Kunszt and Nason.

1 data table

The data are compared to the predictions of Monte-Carlo. Two values of ALPHA_S are corresponded the two theoretical models used in the comparison.


Measurement of alpha-s from energy-energy correlations at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ash, W.W. ; et al.
Phys.Rev.D 50 (1994) 5580-5590, 1994.
Inspire Record 373005 DOI 10.17182/hepdata.17744

We have determined the strong coupling $\as$ from a comprehensive study of energy-energy correlations ($EEC$) and their asymmetry ($AEEC$) in hadronic decays of $Z~0$ bosons collected by the SLD experiment at SLAC. The data were compared with all four available predictions of QCD calculated up to $\Oa2$ in perturbation theory, and also with a resummed calculation matched to all four of these calculations. We find large discrepancies between $\as$ values extracted from the different $\Oa2$ calculations. We also find a large renormalization scale ambiguity in $\as$ determined from the $EEC$ using the $\Oa2$ calculations; this ambiguity is reduced in the case of the $AEEC$, and is very small when the matched calculations are used. Averaging over all calculations, and over the $EEC$ and $AEEC$ results, we obtain $\asz=0.124~{+0.003}_{-0.004} (exp.) \pm 0.009 (theory).$

5 data tables

Statistical errors only.

Statistical errors only.

ALPHAS from the EEC O(ALPHAS**2) measurement.

More…

Precise Measurement of the Left-Right Cross Section Asymmetry in $Z$ Boson Production by $\ee$ Collisions

The SLD collaboration Abe, K. ; Abt, I. ; Ash, W.W. ; et al.
Phys.Rev.Lett. 73 (1994) 25-29, 1994.
Inspire Record 373007 DOI 10.17182/hepdata.19681

We present a precise measurement of the left-right cross section asymmetry ($A_{LR}$) for $Z$ boson production by $\ee$ collisions. The measurement was performed at a center-of-mass energy of 91.26 GeV with the SLD detector at the SLAC Linear Collider (SLC). The luminosity-weighted average polarization of the SLC electron beam was (63.0$\pm$1.1)%. Using a sample of 49,392 $\z0$ decays, we measure $A_{LR}$ to be 0.1628$\pm$0.0071(stat.)$\pm$0.0028(syst.) which determines the effective weak mixing angle to be $\swein=0.2292\pm0.0009({\rm stat.})\pm0.0004({\rm syst.})$.}

2 data tables

The observed, corrected, asymmetry. L and R refer to the left and right handed beam polarizations.

The left-right asymmetry and effective weak mixing angle corrected to the pole energy value, taking into account photon exchange and electro weak interferences. L and R refer to left and right beam polarizations.