$\Sigma^{+}$ production in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Abualrob, Ibrahim Jaser ; Acharya, Shreyasi ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2025-181, 2025.
Inspire Record 2964522 DOI 10.17182/hepdata.167195

The measurement of $\Sigma^{+}$ production in pp collisions at $\sqrt{s} = 13$ TeV is presented. The measurement is performed at midrapidity in both minimum-bias and high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV. The $\Sigma^{+}$ is reconstructed via its weak-decay topology in the decay channel $\Sigma^{+} \rightarrow {p} + \pi^{0}$ with $\pi^{0} \rightarrow \gamma + \gamma$. In a novel approach, the neutral pion is reconstructed by combining photons that convert in the detector material with photons measured in the calorimeters. The transverse-momentum ($p_{T}$) distributions of the $\Sigma^{+}$ and its rapidity densities d$N/$dy in both event classes are reported. The $p_{T}$ spectrum in minimum-bias collisions is compared to QCD-inspired event generators. The ratio of $\Sigma^{+}$ to previously measured $\Lambda$ baryons is in good agreement with calculations from the Statistical Hadronization Model. The high efficiency and purity of the novel reconstruction method for $\Sigma^{+}$ presented here will enable future studies of the interaction of $\Sigma^{+}$ with protons in the context of femtoscopic measurements, which could be crucial for understanding the equation of state of neutron stars.

2 data tables

$p_\mathrm{T}$-differential production yield of $\Sigma^+$ and $\bar{\Sigma}^-$ baryons in the high-multiplicity triggered pp collisions at $\sqrt{{s}}=13~\mathrm{{TeV}}$ in the rapidity interval $|y|<0.8$.

$p_\mathrm{T}$-differential production yield of $\Sigma^+$ and $\bar{\Sigma}^-$ baryons in the minimum-bias triggered pp collisions at $\sqrt{{s}}=13~\mathrm{{TeV}}$ in the rapidity interval $|y|<0.8$.


Multiplicity dependence of $Ξ_c^+$ and $Ξ_c^0$ production in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Abualrob, Ibrahim Jaser ; Acharya, Shreyasi ; Aglieri Rinella, Gianluca ; et al.
JHEP 12 (2025) 038, 2025.
Inspire Record 2960135 DOI 10.17182/hepdata.166317

The first measurement at midrapidity ($|y| < 0.5$) of the production yield of the strange-charm baryons $Ξ_c^+$ and $Ξ_c^0$ as a function of charged-particle multiplicity in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ALICE experiment at the LHC is reported. The $Ξ_c^+$ baryon is reconstructed via the $Ξ_c^+ \rightarrow Ξ^-π^+π^+$ decay channel in the range $4 < p_{\rm T} < 12$ GeV/$c$, while the $Ξ_c^0$ baryon is reconstructed via both the $Ξ_c^0 \rightarrow Ξ^-π^+$ and $Ξ_c^0 \rightarrow Ξ^-e^+ν_e$ decay channels in the range $2 < p_{\rm T} < 12$ GeV/$c$. The baryon-to-meson ($Ξ_c^{0,+}/D^0$) and the baryon-to-baryon ($Ξ_c^{0,+}/Λ_c^+$) production yield ratios show no significant dependence on multiplicity. In addition, the observed yield ratios are not described by theoretical predictions that model charm-quark fragmentation based on measurements at $e^+e^-$ and $e^-$p colliders, indicating differences in the charm-baryon production mechanism in pp collisions. A comparison with different event generators and tunings, including different modelling of the hadronisation process, is also discussed. Moreover, the branching-fraction ratio of BR($Ξ_c^0 \rightarrow Ξ^-e^+ν_e$)/BR($Ξ_c^0 \rightarrow Ξ^-π^+$) is measured as 0.825 $\pm$ 0.094 (stat.) $\pm$ 0.081 (syst.). This value supersedes the previous ALICE measurement, improving the statistical precision by a factor of 1.6.

9 data tables

$p_{\rm T}$-differential per-event yield of prompt $\Xi_c^0$ baryons measured in the different multiplicity classes.

$p_{\rm T}$-differential per-event yield of prompt $\Xi_c^+$ baryons measured in the different multiplicity classes.

Ratio between the prompt $\Xi_c^0$ baryons in a multiplicity class to the multiplicity-integrated (INEL $>$ 0) class.

More…

$\overlineΣ^{\pm}$ production in pp and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with ALICE

The ALICE collaboration Abualrob, Ibrahim Jaser ; Acharya, Shreyasi ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2025-151, 2025.
Inspire Record 2948508 DOI 10.17182/hepdata.167229

The transverse momentum spectra and integrated yields of $\overlineΣ^{\pm}$ have been measured in pp and p-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV with the ALICE experiment. Measurements are performed via the newly accessed decay channel $\overlineΣ^{\pm} \rightarrow {\rm\overline{n}}π^{\pm}$. A new method of antineutron reconstruction with the PHOS electromagnetic spectrometer is developed and applied to this analysis. The $p_{\rm T}$ spectra of $\overlineΣ^{\pm}$ are measured in the range $0.5 < p_{\rm T} < 3$ GeV/$c$ and compared to predictions of the PYTHIA 8, DPMJET, PHOJET, EPOS LHC and EPOS4 models. The EPOS LHC and EPOS4 models provide the best descriptions of the measured spectra both in pp and p-Pb collisions, while models which do not account for multiparton interactions provide a considerably worse description at high $p_{\rm T}$. The total yields of $\overlineΣ^{\pm}$ in both pp and p-Pb collisions are compared to predictions of the Thermal-FIST model and dynamical models PYTHIA 8, DPMJET, PHOJET, EPOS LHC and EPOS4. All models reproduce the total yields in both colliding systems within uncertainties. The nuclear modification factors $R_{\rm pPb}$ for both $\overlineΣ^{+}$ and $\overlineΣ^{-}$ are evaluated and compared to those of protons, $Λ$ and $Ξ$ hyperons, and predictions of EPOS LHC and EPOS4 models. No deviations of $R_{\rm pPb}$ for $\overlineΣ^{\pm}$ from the model predictions or measurements for other hadrons are found within uncertainties.

22 data tables

$p_\mathrm{{T}}$-differential production yield of $\overline{\Sigma}^{+}$ in INEL pp collisions at $\sqrt{s}=5.02~\mathrm{{TeV}}$ in the rapidity interval $|y|<0.5$.

$p_\mathrm{{T}}$-differential production yield of $\overline{\Sigma}^{-}$ in INEL pp collisions at $\sqrt{s}=5.02~\mathrm{{TeV}}$ in the rapidity interval $|y|<0.5$.

$p_\mathrm{{T}}$-differential production yield of $\overline{\Sigma}^{+}$ in NSD p-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02~\mathrm{{TeV}}$ in the rapidity interval $|y_\mathrm{CMS}|<0.5$.

More…

Study of $\langle p_{\rm T} \rangle$ and its higher moments, and extraction of the speed of sound in Pb-Pb collisions with ALICE

The ALICE collaboration Abualrob, Ibrahim Jaser ; Acharya, Shreyasi ; Aglieri Rinella, Gianluca ; et al.
JHEP 11 (2025) 076, 2025.
Inspire Record 2933773 DOI 10.17182/hepdata.165515

Ultrarelativistic heavy-ion collisions create a quark-gluon plasma (QGP), a hot and dense state of strongly interacting QCD matter. In ultracentral collisions, the QGP volume remains nearly constant event-by-event, while its total entropy can fluctuate due to quantum effects, leading to temperature variations. These features allow the correlation between the mean transverse momentum $(\langle p_{\mathrm{T}} \rangle)$ of charged hadrons and their multiplicity to serve as a probe of the QGP's speed of sound, $c_{s}$. This study extracts $c_{s}$ by analyzing the relative increase in $\langle p_{\mathrm{T}} \rangle$ with respect to the charged-particle density $(\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle)$ at midrapidity in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$, using data from the ALICE detector. Centrality is determined with estimators based on multiplicity and transverse energy, applying a pseudorapidity gap to reduce selection biases. The extracted value of $c_{s}^{2}$ is found to strongly depend on the employed centrality estimator and ranges between $0.1146 \pm 0.0028 \,\mathrm{(stat.)} \pm 0.0065 \,\mathrm{(syst.)}$ and $0.4374 \pm 0.0006 \mathrm{(stat.)} \pm 0.0184 \mathrm{(syst.)}$ in natural units. Additionally, the event-by-event $[p_{\mathrm{T}}]$ distribution is studied through its variance, skewness, and kurtosis. A pronounced decrease in the self-normalized variance and a peak followed by a drop in skewness suggest the suppression of impact-parameter fluctuations in ultracentral collisions. These observations provide new insights into the thermodynamic properties and initial-state fluctuations of the QGP.

35 data tables

Average number of participating nucleons ($\langle N_{\mathrm{part}} \rangle$) as a function of centrality percentile in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimators based on $N_{\mathrm{ch}}$, ${N_{\mathrm{tracklets}}}$, and $E_{\mathrm{T}}$ within $|\eta|\leq 0.8$.

Average number of participating nucleons ($\langle N_{\mathrm{part}} \rangle$) as a function of centrality percentile in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimator based on $N_{\mathrm{ch}} \in$ $-3.7<\eta<-1.7$ and $2.8 < \eta <5.1$.

Normalized $p_{\mathrm{T}}$-spectrum ratio as a function as a function of centrality in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimator based on $N_{\mathrm{ch}} \in$ $0.5 \leq |\eta|\leq 0.8$.

More…