The forward-backward charge asymmetries of theb andc quarks are measured with the JADE detector at PETRA at\(\sqrt s= 35\) GeV and 44 GeV using both electrons and muons to tag the heavy quarks. At\(\sqrt s= 35\) GeV, a simultaneous fit for the two asymmetries yields the resultAb=−9.3±5.2% (state.) ndAc=−9.6±4.0% (stat.). The systematic errors are comparable with the statistical uncertainties. Combining the measurements at both energies and alternately constraining the weak coupling of thec andb quark to their Standard Model values (ac=1,ab=−1) increases the precision of the measurement of coupling constant of the other quark. Using this procedureab=−0.72±0.34 andac=0.79±0.40, where the numbers are corrected for\(B\bar B - mixing\) and the errors include both statistical and systematic contributions. The mixing parameter for continuum\(b\bar b - production\) is determined to be χ-0.24±0.12 if both heavy quark coupling constants are constrained to their values in the Standard Model.
Results of simultaneous fit to both asymmetries. This table is for the CHARMED quark.
Results of simultaneous fit to both asymmetries. This table is for the BOTTOM quark.
Results for BOTTOM quark asymmetry with c asymmetry constrained to the standard model value.
The forward-backward asymmetry of quarks produced in e+e− annihilations, summed over all flavors, is measured at √s between 50 and 60.8 GeV. Methods of determining the charge direction of jet pairs are discussed. The asymmetry is found to agree with the five-flavor standard model.
Forward backward asymmetry summed over all flavours of quarks.
The production rate of charged D* mesons in jets has been measured in 1.8-TeV p¯p collisions at the Fermilab Tevatron with the Collider Detector at Fermilab. In a sample of approximately 32 300 jets with a mean transverse energy of 47 GeV obtained from an exposure of 21.1 nb−1, a signal corresponding to 25.0±7.5(stat)±2.0(syst) D*±→K∓π±π± events is seen above background. This corresponds to a ratio N(D*++D*−)/N(jet) =0.10±0.03±0.03 for D* mesons with fractional momentum z greater than 0.1.
Mean jet transverse energy is 47 GeV. Branching rates for D* --> D0 PI of 0.57 +- 0.04 (DSYS=0.04) and D0 --> K- PI+ of 0.042 +- 0.004 (DSYS=0.004), from MARK-III have been used.
We have measured the mass of the Z boson to be 91.14±0.12 GeV/c2, and its width to be 2.42−0.35+0.45 GeV. If we constrain the visible width to its standard-model value, we find the partial width to invisible decay modes to be 0.46±0.10 GeV, corresponding to 2.8±0.6 neutrino species, with a 95%-confidence-level upper limit of 3.9.
No description provided.
Results are presented on an investigation of photons produced in multihadronic final states frome+e− annihilation at 35 GeV and 44 GeV center of mass energies. Scalling violation between 14 and 44 GeV is observed in inclusive photon spectra. Comparing inclusive π0 spectra with charged pion spectra it is found that the average π0 multiplicity exceeds the charged pion multiplicity scaled by factor of 0.5 by (16±5)% and (21±7)% at 35 and 44 GeV respectively. The excess can be attributed to isospin violating decays of hadrons. The η multiplicity is found to be 〈nη〈=0.64±0.09±0.06 at 35 GeV. With a significance of three standard deviations a signal from quark bremsstrahlung is observed. The measured charge asymmetry in hadronic final states, due to the interference between initial and final state radiation, ofA=−0.141±0.041 is in accord with QED expectations. An interference effect in the azimuth angle distribution of charged jets around the photon direction is observed for the first time.
No description provided.
No description provided.
No description provided.
The full TASSO data have been used to study the orientation of three-jet events ine+e− annihilation. The polar angle distributions of the normal to the three-jet plane as well as the polar angle distribution of the most energetic jet have been measured as a function of the thrust cut-off used to select the three-jet sample. The data corrected for radiation and detector effects are compared to QCD predictions and fair agreement is found. As a consistency check we also present measurements of the azimuthal correlations between the lepton and hadron planes. A significant azimuthal dependence is found, consistent again with the QCD predictions.
No description provided.
The folded differential cross sections dσdΩ(θ*)+dσdΩ(π−θ*), where θ* is the center-of-mass angle of the negatively charged outgoing particle, have been measured for the reactions p¯p→π−π+ and K−K+ at 15 incident beam momenta between 360 and 760 MeV/c with much better statistics than previous experiments. The total cross sections for these reactions, σπ−π+ and σκ−κ+, have also been obtained by integrating the folded differential cross sections. The folded differential cross sections of both reactions show a similar behavior at all measured beam momenta, characterized by a prominent peak at |cosθ*|=1. The cross section σπ−π+ shows a smooth but rapidly decreasing behavior as the beam momentum increases up to 550 MeV/c, whereas σκ−κ+ shows a smooth and flat momentum dependence. These results are compared with some theoretical calculations based on nonrelativistic quark models. Although the shape of the folded differential cross section of the p¯p→π−π+ reaction is rather well reproduced by these models, that of the p¯p→K−K+ reaction, and, in particular, the prominent peak at |cosθ*|=1 cannot be explained at all. The information from other experiments indicates that this discrepancy is most pronounced at the backward angles. Moreover, the momentum dependence of both σπ−π+ and σκ−κ+ is not satisfactorily reproduced by these models.
Folded differential cross sections.
Folded differential cross sections.
Folded differential cross sections.
We have measured the strange-quark content of the nucleon, ηs=−0.08+0.012, and the Kobayashi-Maskawa matrix element ‖Vcd‖=0.220−0.018+0.015 using a sample of 1797 νμ- and ν¯μ-induced μ−μ+ events with Pμ≥9 GeV/c and 30≤Eν≤600 GeV. The data are consistent with the slow-rescaling hypothesis of charm production in ν-N scattering and within this formalism yield a value of the charm-quark mass parameter mc=1.31−0.48+0.64 GeV/c2. .AE
No description provided.
No description provided.
We report on a measurement of the processes e + e − →e + e − , e + e − → μ + μ − , and e + e − → τ + τ − near the Z 0 pole. On the basis of 163 e + e − , 101 μ + μ − and 87 τ + τ − events we obtain Γ ee =89±4±4 MeV, Γ μμ =85±9±6 MeV and Γ ττ =87±10±8 MeV, compatible with the standard model. Combining these with our previous results on hadronic Z 0 decays, we find a hadronic width Γ had =1787±81±90 MeV and an invisible width Γ inv =552±85±71 MeV.
Statistical errors only.
Statistical errors only.
We have measured both the rates and the forward-backward asymmetry of ℓ + ℓ − from Z 0 →ℓ + ℓ − (where ℓ= μ , τ ) with the L3 detector. We obtained Γ ℓℓ =88±4±3 MeV and the vector neutral current coupling constant, g v =0.00±0.07 and the axial vector neutral current coupling constant, g A =−0.515±0.015.
No description provided.
No description provided.