Diffractive photoproduction of D*+/-(2010) mesons was measured with the ZEUS detector at the ep collider HERA, using an integrated luminosity of 78.6 pb^{-1}. The D* mesons were reconstructed in the kinematic range: transverse momentum p_T(D*) > 1.9 GeV and pseudorapidity |eta(D*)| < 1.6, using the decay D*+ -> D0 pi+_s followed by D0 -> K- pi+ (+c.c.). Diffractive events were identified by a large gap in pseudorapidity between the produced hadronic state and the outgoing proton. Cross sections are reported for photon-proton centre-of-mass energies in the range 130 < W < 300 GeV and for photon virtualities Q^2 < 1 GeV^2, in two ranges of the Pomeron fractional momentum x_pom < 0.035 and x_pom < 0.01. The relative contribution of diffractive events to the inclusive D*+/-(2010) photoproduction cross section is about 6%. The data are in agreement with perturbative QCD calculations based on various parameterisations of diffractive parton distribution functions. The results are consistent with diffractive QCD factorisation.
Total cross section integrated over the given kinematic range.
Ratio of diffractive to inclusive D* cross section.
Differential cross sections for diffractive photoproduction of D*+- mesons as a function of X(NAME=POMERON).
Differential cross sections for αα and αp scattering have been measured at √ s =125 and 88 GeV, respectively, in the t range from −0.2 to −0.8 (GeV/ c ) 2 using the Split-Field Magnet detector at the CERN Intersecting Storage Rings. Comparison with theoretical calculations using the Glauber model confirms the importance of including inelastic shadowing effects in very high energy nucleus-nucleus elastic scattering.
No description provided.
PLAB IS CALCULATED ASSUMING STATIONARY HELIUM TARGET.
We present experimental results on proton-deuteron and deuteron-deuteron elastic scattering measured at the two highest ISR energies, √ s = 53 GeV and √ s = 63 GeV. The data cover the single- and multiple-scattering regions over a wide interval of four-momentum transfer t . In both reactions we find clear evidence for a substantial t -dependent contribution of inelastic intermediate states in the multiple-scattering region, as well as in single scattering. In the analysis we use the Glauber multiple-scattering theory extended to include inelastic shadow effects. This extension of the basic theory contains as input a triple-Regge parametrization describing the high-mass inclusive spectrum. The analysis of inelastic corrections to multiple scattering on deuterons at high energies is shown to provide a sensitive test of different parametrization of inclusive production in proton-proton collisions.
AT SQRT(S) OF 53 AND 63 GEV.
Results are presented on elastic scattering of 10.1 GeV/ c K − mesons on protons, based on a sample of 16 261 kinematically-fitted bubble-chamber events. The differential cross section is given over the | t |- range of 0.06 to 2.5 GeV 2 and is fitted with the expressions a e bt , A e Bt + Ct 2 and ( P e Qt + Re St ) over various intervals of t . The results are compared with those of other experiments at nearby energies. Upper limits of | α | < 0.28 and σ B < 0.4 μ b (both at a 90% confidence level) are given for the ratio of real to imaginary part of the forward-scattering amplitude and the backward-elastic-scattering cross section, respectively.
No description provided.
ERROR INCLUDES STATISTICAL ERROR AND ERROR IN TOTAL CROSS SECTION USED FOR NORMALIZATION. EXTRAPOLATION OF D(SIG)/DT TO T=0 PROVIDES ABOUT 0.5 PCT UNCERTAINTY.
NO BACKWARD EVENTS OBSERVED. LARGEST ANGLE EVENT SEEN WAS AT 64 DEG (-T = 2.33 GEV**2).
Cross sections are presented for the K + p interacttions with 2, 3, 4 and 5 particles in the final state for incident momenta between 2.1 and 2.7 GeV/c. The results are compared with those from other experiments at nearby momenta.
Axis error includes +- 0.0/0.0 contribution (?////).
Results are presented of a bubble chamber experiment on K − p elastic scattering at 14.3 GeV/ c , in four-momentum transfer range 0.04 < | t | < 2.74 GeV 2 using an initial set of 40 000 events. The total elastic cross section is (2.96 ± 0.10) mb. The results are compared with K + p elastic scattering data at 13.8 GeV/ c , and the effective Regge trajectory is calculated using K − p data from 5 to 100 GeV/ c .
FOR -T < 0.04 GEV**2, CROSS SECTION WAS EXTRAPOLATED TO THE OPTICAL POINT WITH -0.055+-0.040 FOR THE REAL/IMAGINARY RATIO OF THE FORWARD AMPLITUDE.
No description provided.
Channel cross sections, elastic differential cross sections and single pion production mass spectra and angular distributions are presented for π − p interactions, based on 139 000 events observed at six energies in the center of mass region 1.50–1.74 GeV.
No description provided.
No description provided.
No description provided.
At the LHC energy of $\sqrt s = 7\,{\mathrm { TeV}}$ , under various beam and background conditions, luminosities, and Roman Pot positions, TOTEM has measured the differential cross-section for proton-proton elastic scattering as a function of the four-momentum transfer squared t. The results of the different analyses are in excellent agreement demonstrating no sizeable dependence on the beam conditions. Due to the very close approach of the Roman Pot detectors to the beam center (≈5σ(beam)) in a dedicated run with β* = 90 m, |t|-values down to 5·10(−)(3) GeV(2) were reached. The exponential slope of the differential elastic cross-section in this newly explored |t|-region remained unchanged and thus an exponential fit with only one constant B = (19.9 ± 0.3) GeV(−)(2) over the large |t|-range from 0.005 to 0.2 GeV(2) describes the differential distribution well. The high precision of the measurement and the large fit range lead to an error on the slope parameter B which is remarkably small compared to previous experiments. It allows a precise extrapolation over the non-visible cross-section (only 9%) to t = 0. With the luminosity from CMS, the elastic cross-section was determined to be (25.4 ± 1.1) mb, and using in addition the optical theorem, the total pp cross-section was derived to be (98.6 ± 2.2) mb. For model comparisons the t-distributions are tabulated including the large |t|-range of the previous measurement (TOTEM Collaboration (Antchev G. et al), EPL, 95 (2011) 41001).
The measured differential elastic cross section.
The measured differential elastic cross section in the high |T| region. where it originally appeared as a plot, but was not tabulated.
The fitted slope parameter for the elastic cross section fitted over 4 |T| ranges.
Results are presented on π + p and K + p elastic scattering at 250 GeV/ c , the highest momentum so far reached for positive meson beams. The experiment (NA22) was performed with the european hybrid spectrometer. The π + p elastic cross section stays constant with energy while the K + p cross section increases.
No description provided.
No description provided.
ERRORS IN ELASTIC CROSS SECTIONS INCLUDE SYSTEMATIC ERRORS.
We present measurements of the total interaction cross section and of the single-diffractive dissociation cross section in αα collisions at √ s = 126 GeV. The result obtained for the total cross section, σ tot = (315±18) mb, is a substantial improvement on the precision of earlier measurements. Earlier elastic data were re-analysed, incorporating, through the optical theorem, the present σ tot measurement, resulting in improved determinations of the forward slope, b − t <0.07 = (87±4) GeV −2 , and of the integrated elastic cross section, σ el = (58±6) mb. The single-diffractive differential cross section falls exponentially with momentum transfer at small values of t with a slope b sd = (19.3 ± 0.6) GeV −2 . The integrated single-diffractive cross section is σ sd = (16.6±2.5) mb. The topology of charged tracks resulting from the disintegration of the α in single-diffractive events reveals a two-component distribution. The cross section data are compared with multiple-scattering models.
Reanalysis using data from ISR experiments R-418, and R-807.