K − p elastic scattering at 10 GeV/ c is studied on ∼3600 bubble chamber events. The elastic cross section is found to be σ el = (3.20 ± 0.14)mb and the ratio σ el σ tot = (0.142 ± 0.006) , that is below the upper limit of 0.185 suggested in a model by Van Hove. The value of the forward differential cross section is consistent with zero real part to the scattering amplitude. The slope of d σ d t is similar to that for π ± and greater than that of K + , with no evidence for shrinkage of the diffraction peak. No events of backward scattering were observed. The Regge-pole model of Phillips and Rarita gives a good fit to the data.
No description provided.
A measurement is presented of dijet and 3-jet cross sections in low-|t| diffractive deep-inelastic scattering interactions of the type ep -> eXY, where the system X is separated by a large rapidity gap from a low-mass baryonic system Y. Data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 18.0 pb^(-1), are used to measure hadron level single and double differential cross sections for 44 GeV. The energy flow not attributed to jets is also investigated. The measurements are consistent with a factorising diffractive exchange with trajectory intercept close to 1.2 and tightly constrain the dominating diffractive gluon distribution. Viewed in terms of the diffractive scattering of partonic fluctuations of the photon, the data require the dominance of qqbarg over qqbar states. Soft colour neutralisation models in their present form cannot simultaneously reproduce the shapes and the normalisations of the differential cross sections. Models based on 2-gluon exchange are able to reproduce the shapes of the cross sections at low x_pom values.
Average values, over the specified interval, of the differential hadron level dijet cross section as a function of Q**2.
Average values, over the specified interval, of the differential hadron level dijet cross section as a function of the average transverse momentum of the two jets in the c.m.frame.
Average values, over the specified interval, of the differential hadron level dijet cross section as a function of the average pseudorapidity of the two jets in the lab frame.
Measurements of the polarization parameters and angular distributions are reported for π±p elastic scattering at 100 GeV/c and for pp elastic scattering at 100- and 300-GeV/c incident momentum. The π±p data cover the kinematic range 0.18≤−t≤1.10 GeV2 and are in agreement with current Regge-model predictions. The pp data cover the kinematic range 0.15≤−t≤1.10 GeV2 and 0.15≤−t≤2.00 GeV2 at 100 and 300 GeV/c, respectively, and are found to be consistent with absorption-model predictions.
THESE ANGULAR DISTRIBUTIONS AND POLARIZATION PARAMETERS ARE TABULATED IN THE RECORD OF THE EARLIER BRIEF REPORT OF THIS EXPERIMENT USING PION BEAMS: I. P. AUER ET AL., PRL 39, 313 (1977).
THESE ANGULAR DISTRIBUTIONS AND POLARIZATION PARAMETERS ARE TABULATED IN THE RECORD OF THE EARLIER BRIEF REPORT OF THIS EXPERIMENT USING A PROTON BEAM: J. H. SNYDER ET AL., PRL 41, 781 (1978) AND PRL 41, 1256(E) (1978).
We present a measurement of the elastic differential cross section $d\sigma(p\bar{p}\rightarrow p\bar{p})/dt$ as a function of the four-momentum-transfer squared t. The data sample corresponds to an integrated luminosity of $\approx 31 nb^{-1}$ collected with the D0 detector using dedicated Tevatron $p\bar{p} $ Collider operating conditions at sqrt(s) = 1.96 TeV and covers the range $0.26 <|t|< 1.2 GeV^2$. For $|t|<0.6 GeV^2$, d\sigma/dt is described by an exponential function of the form $Ae^{-b|t|}$ with a slope parameter $ b = 16.86 \pm 0.10(stat) \pm 0.20(syst) GeV^{-2}$. A change in slope is observed at $|t| \approx 0.6 GeV^2$, followed by a more gradual |t| dependence with increasing values of |t|.
The $d\sigma$/$dt$ differential cross section. The statistical and systematic uncertainties are added in quadrature.
Differential cross sections for the elastic scattering of K + mesons on protons have been measured at 12 lab momenta between 130 and 755 MeV/ c using a hydrogen filled bubble chamber. The results are consistent with a repulsive S-wave nuclear force. A phase-shift analysis yielded the following values of the low-energy parameters: a S 1 2 =(0.309±0.002) fm , r S 1 2 =(0.032±0.02) fm a P 1 2 =(0.021±0.002) fm , a P 3 2 =(0.013±0.001) fm 3
No description provided.
No description provided.
No description provided.
None
No description provided.
None
CROSS-OVER IS AT -T = 0.17 +- 0.02 GEV**2. DIVIDE BY 20 TO GET D(SIG)/DT IN MB/GEV**2. CORRECTED FOR LOST EVENTS FOR -T < 0.12 GEV**2.
FROM QUADRATIC EXPONENTIAL FIT TO D(SIG)/DT. BOTH STATISTICAL AND SYSTEMATIC ERRORS INCLUDED IN VALUES.
We discuss how the spatial intermittency of energy dissipation in 3D fully developed turbulence affects the small-scale statistics of passive scalars. We relate the passive-scalar behaviour to the diffusion properties of particle pairs in turbulent fluids. We thus find the intermittency correction to the -5/3 Obukhov-Corrsin law for the power spectrum of a passive scalar at wavenumber k where molecular diffusion and viscosity play a negligible role (inertial convective subrange). This correction is positive at difference with the negative correction to the -5/3 Kolmogorov law for the energy spectrum. We finally show that the structure functions of passive scalars have scaling exponents linear in the moment order, even in the framework of multifractal models.
'2'.
We report on a study of radiative Bhabha and quasi-real Compton scattering at centre-of-mass energies between 50 GeV and 170 GeV, and 20 GeV and 140 GeV, respectively, using the L3 detector at LEP. The analysis is based on data corresponding to an integrated luminosity of 232.2 pb −1 . A total of 2856 radiative Bhabha and 4641 Compton scattering events are collected. Total and differential cross sections for both reactions are presented and found to be in good agreement with QED expectations. Our measurement of Compton scattering at the highest energies obtained so far is used to derive exclusion limits on the coupling λ for the on-shell production of an excited electron e ★ decaying into a γ e pair in the mass range 20 GeV
Measured cross sections for radiative Bhabha scattering events.
Measured cross sections for the quasi-real Compton scattering events.
Reactions p p → p p and p p → n n were studied at the kinetic energy 230 MeV of incident p by using bubble chamber films. Total cross sections for both of the reactions were found to be 51.2 ± 1.6 mb and 9.1 ± 0.6 mb, respectively. Differential cross sections are well explained by the phenomenological theory given by Bryan and Phillips.
No description provided.
No description provided.