K−−p interactions in the Columbia-BNL 30-in. hydrogen bubble chamber were studied at nine momenta from 594 to 820 MeVc. The results for elastic-scattering and zero-prong-plus-V0 events are presented here. Differential cross sections are given for the K−p, K¯0n, and Λπ0 final states. A fit to the K¯N channels was obtained which shows the effects of a 32− resonance at 1701 MeV. This energy is appreciably displaced from the peak in the inelastic cross section.
No description provided.
No description provided.
No description provided.
The reactions π−p→π−p and π−p→π−π0p for 1.7 GeV/c incident π− have been studied, in 3094 and 2244 interactions respectively, identified from 10 106 two-prong events measured in film exposed at the BNL 20 in. hydrogen bubble chamber. The differential elastic-scattering cross-section is found to show a first and second diffraction peak and a first diffraction minimum with indications of a second minimum and onset of a third maximum. The experimental curve has been fitted by a black-dise optical-model formula with radius (0.80±0.03) fm and by a differential cross-section computed from the Dirac equation depending on two ranges, 0.7 fm attractive imaginary and 0.4 fm repulsive. The dominant mode (∼40%) of the π−π0p production is through the two-body channel, π−p→ϱ−p. We find the following cross-sections: σ(π−p→π−p mb, σ(π−p→π−p mb. The differential rhomeson production cross-section shows a diffraction peak having a dependence (dσ/dt)(π−p→ϱ−p)=[(2.5±0.2) exp [(−5.3±0.5)t]] mb/(GeV/c)2, wheret is the squared four0momentum transfer between incoming and outgoing proton in (GeV/c)2, and a second diffraction maximum. It has been fitted by an optical-model formula for a bright ring of radius 0.80 fm and ring thickness 0.25 fm. The cross-section for σ(π−p→π−p was found to be (0.36±0.04) mb. From the inelastic data the Chew-Low dipion scattering cross-section has been computed, using various form factors. A form factor of unity is found to be acceptable.
No description provided.
The interactions of 775 MeV (kinetic energy) π−-mesons in a hydrogen bubble chamber have been studied. Total and partial crosssections have been determined with the following results: σ (total) = (39.0±1.6) mb, σ (elastic)=(14.8±0.7) mb, σ (π− + p → all neutrals) = (9.0 ± 0.5) mb, σ (π− + p = π− + π+ + n) = (9.8 ± 0.5) mb, and σ (π− + p = π− + p + π0) = (4.8 ± 0.3) mb. The elastic-scattering angular distribution has been fitted with a Legendre polynomial series terminated at the fifth order. Various angular and effective-mass distributions of single-π production are presented and discussed in terms of the Olsson-Yodh and O.P.E. models.
No description provided.
No description provided.
No description provided.
The differential cross section and recoil-proton polarization in π−−p elastic scattering at 310-MeV incident-pion energy has been measured. The differential cross section was measured at 28 angles in the angular region 25<~θlab<~160 deg. The fractional rms errors were typically 3%. The reaction was observed by counting the scattered pions emerging from a liquid-hydrogen target with a counter telescope consisting of scintillation and Čerenkov counters. Simultaneously, the recoil-proton polarization was measured at four angles in the angular region 114<θc.m.<146 deg. The recoil protons from the liquid-hydrogen target were scattered from a carbon target and the left-right asymmetry was measured. Scintillation counters were used throughout to detect the particles.
No description provided.
No description provided.
None
No description provided.