A measurement of the inclusive ep scattering cross section is presented in the region of low momentum transfers, 0.2 GeV^2 < Q^2 < 12 GeV^2, and low Bjorken x, 5x10^-6 < x < 0.02. The result is based on two data sets collected in dedicated runs by the H1 Collaboration at HERA at beam energies of 27.6 GeV and 920 GeV for positrons and protons, respectively. A combination with data previously published by H1 leads to a cross section measurement of a few percent accuracy. A kinematic reconstruction method exploiting radiative ep events extends the measurement to lower Q^2 and larger x. The data are compared with theoretical models which apply to the transition region from photoproduction to deep inelastic scattering.
Reduced cross section as measured in the SVX data sample for Q**2 = 0.20 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.
Reduced cross section as measured in the SVX data sample for Q**2 = 0.25 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.
Reduced cross section as measured in the SVX data sample for Q**2 = 0.35 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.
Total and differential cross sections for the reaction gamma p -> pi^o eta p have been measured with the Crystal Ball/TAPS detector using the tagged photon facility at the MAMI C accelerator in Mainz. In the energy range E_gamma=0.95-1.4 GeV the reaction is dominated by the excitation and sequential decay of the Delta(1700)D33 resonance. Angular distributions measured with high statistics allow us to determine the ratio of hadronic decay widths \Gamma_{\eta \Delta}/\Gamma_{\pi S11} and the ratio of the helicity amplitudes A_{3/2}/A_{1/2} for this resonance.
Total cross section for the GAMMA P --> PI0 ETA P reaction.. Statistical erros only.
The differential cross section as a function of cos(theta(pi0) in the canonical(K) reference frame.. Statistical erros only.
The differential cross section as a function of phi(pi0) in the canonical(K) reference frame.. Statistical erros only.
A study of the angular distributions of leptons from decays of J/psi's produced in p-C and p-W collisions at sqrt{s}=41.6 GeV has been performed in the Feynman-x region -0.34 < x_F < 0.14 and for transverse momentum up to 5.4 GeV/c. The data were collected by the HERA-B experiment at the HERA proton ring of the DESY laboratory. The results, based on a clean selection of 2.3 x 10^5 J/psi's reconstructed in both the e^+ e^- and mu^+ mu^- decay channels, indicate that J/psi's are produced with longitudinal polarization. The magnitude of the effect is maximal at low p_T. For p_T >1 GeV/c a significant dependence on the reference frame is found: the polar anisotropy is more pronounced in the Collins-Soper frame and almost vanishes in the helicity frame, where, instead, a significant azimuthal anisotropy arises.
Output parameters obtained by fitting the distributions.
Values of the parameters Lambda_theta, Lambda_phi et Lambda_theta_phi measured in the Collins-Soper frame as functions of the average reconstructed p_T for combined carbon and tungsten data.
Values of the parameters Lambda_theta, Lambda_phi et Lambda_theta_phi measured in the Collins-Soper frame as functions of the average reconstructed x_F for combined carbon and tungsten data.
A measurement of the inclusive deep-inelastic neutral current e+p scattering cross section is reported in the region of four-momentum transfer squared, 12<=Q^2<=150 GeV^2, and Bjorken x, 2x10^-4<=x<=0.1. The results are based on data collected by the H1 Collaboration at the ep collider HERA at positron and proton beam energies of E_e=27.6 GeV and E_p=920 GeV, respectively. The data are combined with previously published data, taken at E_p=820 GeV. The accuracy of the combined measurement is typically in the range of 1.3-2%. A QCD analysis at next-to-leading order is performed to determine the parton distributions in the proton based on H1 data.
Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.
Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.
Data from the 2000 running period at Q**2 There is an additional 1.2 PCT overall normalisation uncertainty not included.
The production of jets is studied in deep-inelastic ep scattering at large negative four momentum transfer squared 150<Q^2<15000 GeV^2 using HERA data taken in 1999-2007, corresponding to an integrated luminosity of 395 pb^-1. Inclusive jet, 2-jet and 3-jet cross sections, normalised to the neutral current deep-inelastic scattering cross sections, are measured as functions of Q^2, jet transverse momentum and proton momentum fraction. The measurements are well described by perturbative QCD calculations at next-to-leading order corrected for hadronisation effects. The strong coupling as determined from these measurements is alpha_s(M_Z) = 0.1168 +/-0.0007 (exp.) +0.0046/-0.0030 (th.) +/-0.0016(pdf).
Normalised inclusive jet cross section in bins of $Q^{2}$.
Normalised 2-jet cross section in bins of $Q^{2}$.
Normalised 3-jet cross section in bins of $Q^{2}$.
Transverse momentum spectra of protons and anti-protons measured in the rapidity range 0<y<3.1 from 0-10% central Au+Au collisions at sqrt{s_{NN}}=62.4 GeV are presented. The rapidity densities, dN/dy, of protons, anti-protons and net-protons N()p-N(pbar) have been deduced from the spectra over a rapidity range wide enough to observe the expected maximum net-baryon density. From mid-rapidity to y=1 the net-proton yield is roughly constant (dN/dy ~ 10),but rises to dN/dy ~25 at 2.3<y<3.1. The mean rapidity loss is 2.01 +-0.16 units from beam rapidity. The measured rapidity distributions are compared to model predictions. Systematics of net-baryon distributions and rapidity loss vs. collision energy are discussed.
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=-0.1-0.1$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=-0.1-0.1$
$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=0.4-0.9$
We report results for $K/\pi$ fluctuations from Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. Our results for $K/\pi$ fluctuations in central collisions show little dependence on the incident energies studied and are on the same order as results observed by NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at $\sqrt{s_{NN}}$ = 12.3 and 17.3 GeV. We also report results for the collision centrality dependence of $K/\pi$ fluctuations as well as results for $K^{+}/\pi^{+}$, $K^{-}/\pi^{-}$, $K^{+}/\pi^{-}$, and $K^{-}/\pi^{+}$ fluctuations. We observe that the $K/\pi$ fluctuations scale with the multiplicity density, $dN/d\eta$, rather than the number of participating nucleons.
(Color online) The event-by-event $K/\pi$ ratio for 200 GeV Au+Au central collisions (0-5%) compared with the same quantity calculated from mixed events. The inset shows the ratio of the distribution from real events to that from mixed events. The errors shown are statistical.
(Color online) The event-by-event $K/\pi$ ratio for 200 GeV Au+Au central collisions (0-5%) compared with the same quantity calculated from mixed events. The inset shows the ratio of the distribution from real events to that from mixed events. The errors shown are statistical.
(Color online) Measured dynamical $K/\pi$ fluctuations in terms of σdyn for central collisions (0 - 5%) of 19.6, 62.4, 130, and 200 GeV Au+Au compared with the central collisions (0 - 3.5%) of Pb+Pb from NA49 [7] and the statistical hadronization (SH) model of Ref. [14]. The solid line represents the relationship of the incident energy dependence of $\sigma_{dyn}$ in central collisions to the collision centrality dependence of $\nu_{dyn,K\pi}$ at higher energies. Both statistical (vertical line with horizontal bar) and systematic (no vertical line) error bars are shown for the experimental data.
The dissociation of virtual photons, $\gamma^{\star} p \to X p$, in events with a large rapidity gap between $X$ and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities $Q^2>2$ GeV$^2$ and $\gamma^{\star} p$ centre-of-mass energies $40<W<240$ GeV, with $M_X>2$ GeV, where $M_X$ is the mass of the hadronic final state, $X$. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of $t$, the squared four-momentum transfer at the proton vertex and $\Phi$, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of $Q^2$ and $\xpom$, the fraction of the proton's momentum carried by the diffractive exchange, as well as $\beta$, the Bjorken variable defined with respect to the diffractive exchange.
The differential cross section DSIG/DT for the LRG and the LPS data samples.
The fitted exponential slope of the T distribution as a function of X(NAME=POMERON).
The fitted exponential slope of the T distribution as a function of X(NAME=POMERON).
A measurement of the $\bjet$ production cross section is presented for events containing a $Z$ boson produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV, using data corresponding to an integrated luminosity of 2 fb$^{-1}$ collected by the CDF II detector at the Tevatron. $Z$ bosons are selected in the electron and muon decay modes. Jets are considered with transverse energy $E_T>20$ GeV and pseudorapidity $|\eta|<1.5$ and are identified as $\bjets$ using a secondary vertex algorithm. The ratio of the integrated $Z+\bjet$ cross section to the inclusive $Z$ production cross section is measured to be $3.32 \pm 0.53 {\rm (stat.)} \pm 0.42 {\rm (syst.)}\times 10^{-3}$. This ratio is also measured differentially in jet $E_T$, jet $\eta$, $Z$-boson transverse momentum, number of jets, and number of $\bjets$. The predictions from leading order Monte Carlo generators and next-to-leading-order QCD calculations are found to be consistent with the measurements within experimental and theoretical uncertainties.
Ratio of integrated Z0 + bjet cross section to inclusive Z0 production.
Ratio of the Z0 + bjet to Z0 cross section as a function of the bjet ET.
Ratio of the Z0 + bjet to Z0 cross section as a function of the bjet pseudorapidity.
We present a search for new particles whose decays produce two jets (dijets) using proton-antiproton collision data corresponding to an integrated luminosity of 1.13 fb-1 collected with the CDF II detector. The measured dijet mass spectrum is found to be consistent with next-to-leading-order perturbative QCD predictions, and no significant evidence of new particles is found. We set upper limits at the 95% confidence level on cross sections times the branching fraction for the production of new particles decaying into dijets with both jets having a rapidity magnitude |y| < 1. These limits are used to determine the mass exclusions for the excited quark, axigluon, flavor-universal coloron, E6 diquark, color-octet technirho, W', and Z'.
The measured dijet mass spectrum for both jets having rapidity from -1 to 1.