The photoproduction of eta-mesons from 2H and 4He has been studied for energies close to the production thresholds. The experiments were carried out with the tagged photon beam of the Mainz MAMI accelerator. The eta-mesons were detected via their two photon decays with the electromagnetic calorimeter TAPS. Total cross sections, angular and momentum distributions of the eta-mesons have been determined for both reactions. The total cross sections in the threshold region show a large enhancement over the predictions of a participant - spectator model, indicating significant final state interaction effects. The results are compared to recent model calculations taking into account nucleon-nucleon and nucleon-eta final state interaction effects on different levels of sophistication.
Total inclusive photoproduction cross sections. Statistical errors only.
Angular distributions of ETA mesons from the Deuterium target in the photon-nucleus cm system. Statistical errors only.
Angular distributions of ETA mesons from the Deuterium target in the photon-nucleus cm system. Statistical errors only.
The photon-proton total cross section has been measured in the process e+ p -> e+ gamma p -> e+ X with the ZEUS detector at HERA. Events were collected with photon virtuality Q^2 < 0.02 GeV^2 and average gamma-p center-of-mass energy W_{gamma p} = 209 GeV in a dedicated run, designed to control systematic effects, with an integrated luminosity of 49 nb^{-1}. The measured total cross section is sigma_{tot}^{gamma p} = 174 +- 1 (stat.) +- 13 (syst.) microbarns. The energy dependence of the cross section is compatible with parameterizations of high-energy p-p and p-pbar data.
Total GAMMA P cross section.
The inclusive production of the omega(782) vector meson in hadronic Z decays is measured and compared to model predictions. The analysis is based on 4 million hadronic Z decays recorded by the ALEPH detector between 1991 and 1995. The production rate for x_p = p_meson/p_beam > 0.05 is measured in the omega -> pi^+ pi^- pi^0 decay mode and found to be 0.585 +- 0.019_stat +- 0.033_sys per event. Inclusive eta meson production is also measured in the same decay channel for x_p > 0.10, obtaining 0.355 +- 0.011_stat +- 0.024_sys per event. The branching ratio for omega -> mu^+ mu^- is investigated. A total of 18.1 +- 5.9 events are observed, from which the muonic branching ratio is measured for the first time to be BR(omega -> mu^+ mu^-) = (9.0 +- 2.9_stat +- 1.1_sys)*10^-5.
Extrapolation using JETSET 7.4 is used to correct down to X = 0.0. The second DSYS error, where relevant, shows the estimated uncertainty on the extrapolation.
Production rate and differential cross sections for the ETA.
Production rate and differential cross sections for the OMEGA.
We present measurements of the B+ meson total cross section and differential cross section $d\sigma/ dp_T$. The measurements use a $98\pm 4$ pb^{-1} sample of $p \bar p$ collisions at $\sqrt{s}=1.8$ TeV collected by the CDF detector. Charged $B$ meson candidates are reconstructed through the decay $B^{\pm} \to J/\psi K^{\pm}$ with $J/\psi\to \mu^+ \mu^-$. The total cross section, measured in the central rapidity region $|y|<1.0$ for $p_T(B)>6.0$ GeV/$c$, is $3.6 \pm 0.6 ({\rm stat} \oplus {\rm syst)} \mu$b. The measured differential cross section is substantially larger than typical QCD predictions calculated to next-to-leading order.
Measured differential cross section for B+ production. The first (DSYS) error is the PT dependent systematic error and the second is the full correlated systematic error.
The total integrated B+ meson cross section. The first error is the combined statistical and PT dependent systematic error. The DSYS error is the fully correlated systematic error.
A search was made among ν μ charged current events collected in the NOMAD experiment for the reaction: ν μ +N→μ − +D ★+ + hadrons ↪ D 0 +π + ↪ K − +π + . A high purity D ★+ sample composed of 35 events was extracted. The D ★+ yield in ν μ charged current interactions was measured to be T =(0.79±0.17(stat.)±0.10(syst.))%. The mean fraction of the hadronic jet energy taken by the D ★+ is 0.67±0.02(stat.)±0.02(syst.). The distributions of the fragmentation variables z, P T 2 and x F for D ★+ are also presented.
Distribution in Feynman X.
Distribution in transverse momentum.
Distribution in fractional energy Z.
The interaction of virtual photons is investigated using the reaction e+e- -> e+e- hadrons based on data taken by the OPAL experiment at e+e- centre-of-mass energies sqrt(s_ee)=189-209 GeV, for W>5 GeV and at an average Q^2 of 17.9 GeV^2. The measured cross-sections are compared to predictions of the Quark Parton Model (QPM), to the Leading Order QCD Monte Carlo model PHOJET to the NLO prediction for the reaction e+e- -> e+e-qqbar, and to BFKL calculations. PHOJET, NLO e+e- -> e+e-qqbar, and QPM describe the data reasonably well, whereas the cross-section predicted by a Leading Order BFKL calculation is too large.
Total cross section in the given phase space and assuming ALPHA = 1/137.
Differential cross section as a function of X where X is the maximum value of X1 or X2, the upper and lower vertex values.
Differential cross section as a function of Q**2 where Q**2 is the maximum value of Q1**2 or Q2**2, the upper and lower vertex values.
Double-tag events in two-photon collisions are studied using the L3 detector at LEP centre-of-mass energies from root(s)=189 GeV to 209 GeV. The cross sections of the e+e- -> e+e- hadrons and gamma*gamma* -> hadrons processes are measured as a function of the photon virtualities, Q1^2 and Q2^2, of the two-photon mass, W_gammagamma, and of the variable Y=ln(W_gammagamma^2/(Q1 Q2)), for an average photon virtuality <Q2> = 16 GeV2. The results are in agreement with next-to-leading order calculations for the process gamma*gamma* -> q qbar in the interval 2 <= Y <= 5. An excess is observed in the interval 5 < Y <= 7, corresponding to W_gammagamma greater than 40 GeV . This may be interpreted as a sign of resolved photon QCD processes or the onset of BFKL phenomena.
Differential cross section as a function of the photon virtualities Qi**2. Here Q1 is the virtuality w.r.t the electron vertex, and Q2 w.r.t the positron vertex. Data are given both before and after radiative corrections.
Differential cross section as a function of W, the invariant mas of the virtual GAMMA*GAMMA* system. Data are given both before and after radiative corrections.
Differential cross section as a function of the variable LN(W**2/Q1*Q2). Data are given both before and after radiative corrections.
The observation of an anomalous J/ ψ suppression in Pb–Pb collisions by the NA50 Collaboration can be considered as the most striking indication for the deconfinement of quarks and gluons at SPS energies. In this Letter, we determine the J/ ψ suppression pattern as a function of the forward hadronic energy E ZDC measured in a Zero Degree Calorimeter (ZDC). The direct connection between E ZDC and the geometry of the collision allows us to calculate, within a Glauber approach, the precise relation between the number of participant nucleons N part and E ZDC . Then, we check if the experimental data can be better explained by a sudden or a smooth onset of the anomalous J/ ψ suppression as a function of the number of participants.
Minimum Bias E(C=ZDC) spectrum. Data extracted from fig with g3data, statistical errors not included and are set to 0, the systematic errors given by g3data due to extraction.
Number of participants as a function of E(C=ZDC) Data exctracted from fig with g3data, the systematic errors given by g3data due to extraction, and those marked (stat) are in this case the r.m.s. of the Npart distribution at fixed E(C=ZDC).;.
SIG(J/PSI)/SIG(DY) as a function of E(C=ZDC) with the standard analyses of the 1996 DATA 1996, standard analyses.
The (p,$\gamma$) cross sections of three stable Sr isotopes have been measured in the astrophysically relevant energy range. These reactions are important for the $p$-process in stellar nucleosynthesis and, in addition, the reaction cross sections in the mass region up to 100 are also of importance concerning the $rp$-process associated with explosive hydrogen and helium burning. It is speculated that this $rp$-process could be responsible for a certain amount of $p$-nuclei in this mass region. The (p,$\gamma$) cross sections of $^{84,86,87}$Sr isotopes were determined using an activation technique. The measurements were carried out at the 5 MV Van de Graaff accelerator of the ATOMKI, Debrecen. The resulting cross sections are compared with the predictions of statistical model calculations. The predictions are in good agreement with the experimental results for $^{84}$Sr(p,$\gamma$)$^{85}$Y whereas the other two reactions exhibit differences that increase with mass number. The corresponding astrophysical reaction rates have also been computed.
The cross sections for ground state (C=G) and isomer (C=I) of YT85, as wellas total (C=TOT) are given.
The cross sections for ground state (C=G) and isomer (C=I) of YT87, as wellas total (C=TOT) are given.
No description provided.
The reaction ${n} {p} \to {p} {p} \pi^{-}$ has been studied in a kinematically complete measurement with a large acceptance time-of-flight spectrometer for incident neutron energies between threshold and 570 MeV. The proton-proton invariant mass distributions show a strong enhancement due to the pp($^{1}{S}_{0}$) final state interaction. A large anisotropy was found in the pion angular distributions in contrast to the reaction ${p}{p} \to {p}{p} \pi^{0}$. At small energies, a large forward/backward asymmetry has been observed. From the measured integrated cross section $\sigma({n}{p} \to {\rm p}{p} \pi^{-})$, the isoscalar cross section $\sigma_{01}$ has been extracted. Its energy dependence indicates that mainly partial waves with Sp final states contribute. Note: Due to a coding error, the differential cross sections ${d \sigma}/{d M_{pp}}$ as shown in Fig. 9 are too small by a factor of two, and inn Table 3 the differential cross sections ${d \sigma}/{d \Omega_{\pi}^{*}}$ are too large by a factor of $10/2\pi$. The integrated cross sections and all conclusions remain unchanged. A corresponding erratum has been submitted and accepted by European Physics Journal.
Differential cross sections DSIG/DOMEGA for excusive PI- production in N P interactions at incident kinetic energies 315, 345 and 375 Mev after background subtraction and efficiency correction.
Differential cross sections DSIG/DOMEGA for exclusive PI- production in N Pinteractions at incident kinetic energies 405, 435 and 465 Mev after background subtraction and efficiency correction.
Differential cross sections DSIG/DOMEGA for exclusive PI- production in N Pinteractions at incident kinetic energies 495, 525 and 550 Mev after background subtraction and efficiency correction.