The first measurement of diffractive scattering of quasi-real photons with large momentum transfer gamma p -> gamma Y, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q^2 < 0.01 GeV^2. Cross sections are measured as a function of W, the incident photon-proton entre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175 < W < 247 GeV and 4<|t|<36 GeV^2. The W dependence is well described by a model based on perturbative QCD using a leading logarithmic approximation of the BFKL evolution. The measured |t| dependence is harder than that predicted by the model and those observed in exclusive vector meson production.
Cross section for the process E+ P --> E+ GAMMA DD as a function of W.
Cross section for the process GAMMA P --> GAMMA DD as a function of W.
Cross section for the process E+ P --> E+ GAMMA DD as a function of T.
Photoproduction of $\eta$ mesons off $^{12}$C, $^{40}$Ca, $^{93}$Nb, and $^{nat}$Pb nuclei has been measured with a tagged photon beam with energies between 0.6 and 2.2 GeV. The experiment was performed at the Bonn ELSA accelerator with the combined setup of the Crystal Barrel and TAPS calorimeters. It aimed at the in-medium properties of the S$_{11}$(1535) nucleon resonance and the study of the absorption properties of nuclear matter for $\eta$ mesons. Careful consideration was given to contributions from $\eta\pi$ final states and secondary production mechanisms of $\eta$-mesons e.g. from inelastic $\pi N$ reactions of intermediate pions. The analysis of the mass number scaling shows that the nuclear absorption cross section $\sigma_{N\eta}$ for $\eta$ mesons is constant over a wide range of the $\eta$ momentum. The comparison of the excitation functions to data off the deuteron and to calculations in the framework of a BUU-model show no unexplained in-medium modifications of the S$_{11}$(1535).
Inclusive energy distribution for incident photon energy 0.650 to 0.835 GeV.
Inclusive energy distribution for incident photon energy 0.835 to 1.050 GeV.
Inclusive energy distribution for incident photon energy 1.050 to 1.550 GeV.
At the electron accelerator ELSA a linearly polarised tagged photon beam is produced by coherent bremsstrahlung off a diamond crystal. Orientation and energy range of the linear polarisation can be deliberately chosen by accurate positioning of the crystal with a goniometer. The degree of polarisation is determined by the form of the scattered electron spectrum. Good agreement between experiment and expectations on basis of the experimental conditions is obtained. Polarisation degrees of P = 40% are typically achieved at half of the primary electron energy. The determination of P is confirmed by measuring the beam asymmetry, \Sigma, in pi^0 photoproduction and a comparison of the results to independent measurements using laser backscattering.
Beam asymmetry as a function of the PI0 centre of mass scattering angle.
Beam asymmetry as a function of the PI0 centre of mass scattering angle.
Beam asymmetry as a function of the PI0 centre of mass scattering angle.
Three-jet production in deep inelastic ep scattering and photoproduction was investigated with the ZEUS detector at HERA using an integrated luminosity of 127 pb-1. Measurements of differential cross sections are presented as functions of angular correlations between the three jets in the final state and the proton-beam direction. These correlations provide a stringent test of perturbative QCD and show sensitivity to the contributions from different colour configurations. Fixed-order perturbative QCD calculations assuming the values of the colour factors C_F, C_A and T_F as derived from a variety of gauge groups were compared to the measurements to study the underlying gauge group symmetry. The measured angular correlations in the deep inelastic ep scattering and photoproduction regimes are consistent with the admixture of colour configurations as predicted by SU(3) and disfavour other symmetry groups, such as SU(N) in the limit of large N.
Integrated 3-jet photoproduction cross section.
Integrated 3-jet cross sections in NC DIS.
Normalized differential 3-jet photoproduction cross section as a function of THETA(H).
The production of two high-p_T jets in the interactions of quasi-real photons in e+e- collisions at sqrt{s_ee} from 189 GeV to 209 GeV is studied with data corresponding to an integrated e+e- luminosity of 550 pb^{-1}. The jets reconstructed by the k_T cluster algorithm are defined within the pseudo-rapidity range -1 < eta < 1 and with jet transverse momentum, p_T, above 3 GeV/c. The differential di-jet cross-section is measured as a function of the mean transverse momentum ptmean of the jets and is compared to perturbative QCD calculations.
Total cross section for dijet production. Errors are combined statistics and systematics.
Measured dijet production cross section as a function of the mean jet transverse momentum. Errors include both statistics and systematics.
Measured dijet production cross section as a function of jet pseudorapiditydifference. Errors include both statistics and systematics.
Photoproduction of beauty quarks in events with two jets and an electron associated with one of the jets has been studied with the ZEUS detector at HERA using an integrated luminosity of 120pb^-1. The fractions of events containing b quarks, and also of events containing c quarks, were extracted from a likelihood fit using variables sensitive to electron identification as well as to semileptonic decays. Total and differential cross sections for beauty and charm production were measured and compared with next-to-leading-order QCD calculations and Monte Carlo models.
Total cross sections for electrons from beauty and charm quarks.
Differential electron cross sections as a function of PT and ETARAP from beauty and charm quarks.
Differential electron cross sections as a function of PT and ETARAP from beauty and charm quarks.
We report a high-statistics measurement of differential cross sections for the process gamma gamma -> pi^0 pi^0 in the kinematic range 0.6 GeV <= W <= 4.0 GeV and |cos theta*| <= 0.8, where W and theta* are the energy and pion scattering angle, respectively, in the gamma gamma center-of-mass system. Differential cross sections are fitted to obtain information on S, D_0, D_2, G_0 and G_2 waves. The G waves are important above W ~= 1.6 GeV. For W <= 1.6 GeV the D_2 wave is dominated by the f_2(1270) resonance while the S wave requires at least one additional resonance besides the f_0(980), which may be the f_0(1370) or f_0(1500). The differential cross sections are fitted with a simple parameterization to determine the parameters (the mass, total width and Gamma_{gamma gamma}B(f_0 -> pi^0 pi^0)) of this scalar meson as well as the f_0(980). The helicity 0 fraction of the f_2(1270) meson, taking into account interference for the first time, is also obtained.
Differential cross section for W = 0.61, 0.63 and 0.65 GeV.
Differential cross section for W = 0.67, 0.69 and 0.71 GeV.
Differential cross section for W = 0.73, 0.75 and 0.77 GeV.
Quasi-free photoproduction of eta-mesons off nucleons bound in the deuteron has been measured with the CBELSA/TAPS detector for incident photon energies up to 2.5 GeV at the Bonn ELSA accelerator. The eta-mesons have been detected in coincidence with recoil protons and recoil neutrons, which allows a detailed comparison of the quasi-free n(gamma,eta)n and p(gamma,eta)p reactions. The excitation function for eta-production off the neutron shows a pronounced bump-like structure at W=1.68 GeV (E_g ~ 1 GeV), which is absent for the proton.
Measured value of the quasi-free eta cross section off protons and neutrons as a function of incident photon energy.
Ratio of the measured quasi-free neutron to proton cross sections as a function of incident photon energy.
Measured angular distribution for an incident photon energy of 0.700 GeV.
The exclusive reactions $\gamma p \to K^{*0} \Sigma^+(1189)$ and $\gamma p \to K^{0} \pi^{0}\Sigma^+(1189)$, leading to the p 4$\pi^{0}$ final state, have been measured with a tagged photon beam for incident energies from threshold up to 2.5 GeV. The experiment has been performed at the tagged photon facility of the ELSA accelerator (Bonn). The Crystal Barrel and TAPS detectors were combined to a photon detector system of almost 4$\pi$ geometrical acceptance. Differential and total cross sections are reported. At energies close to the threshold, a flat angular distribution has been observed for the reaction $\gamma p\to K^{0} \pi^{0}\Sigma^+$ suggesting dominant s-channel production. $\Sigma^*(1385)$ and higher lying hyperon states have been observed. An enhancement in the forward direction in the angular distributions of the reaction $\gamma p \to K^{*0}\Sigma^+$ indicates a $t$-channel exchange contribution to the reaction mechanism. The experimental data are in reasonable agreement with recent theoretical predictions.
Differential cross section D(SIG)/DCOS(THETA(SIG+)) for the GAMMA P --> K0 PI0 SIGMA+ reaction for beam energies 1500-1700 and 1700-1850 MeV.
Differential cross section D(SIG)/DCOS(THETA(SIG+)) for the GAMMA P --> K0 PI0 SIGMA+ reaction for beam energies 1850-2000 and 2000-2150 MeV.
Differential cross section D(SIG)/DCOS(THETA(SIG+)) for the GAMMA P --> K0 PI0 SIGMA+ reaction for beam energies 2150-2300 and 2300-2500 MeV.
Deep inelastic scattering and its diffractive component, $ep \to e^{\prime}\gamma^* p \to e^{\prime}XN$, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb$^{-1}$. The $M_X$ method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy $W$ (37 -- 245 GeV), photon virtuality $Q^2$ (20 -- 450 GeV$^2$) and mass $M_X$ (0.28 -- 35 GeV) is covered. The diffractive cross section for $2 < M_X < 15$ GeV rises strongly with $W$, the rise becoming steeper as $Q^2$ increases. The data are also presented in terms of the diffractive structure function, $F^{\rm D(3)}_2$, of the proton. For fixed $Q^2$ and fixed $M_X$, $\xpom F^{\rm D(3)}_2$ shows a strong rise as $\xpom \to 0$, where $\xpom$ is the fraction of the proton momentum carried by the Pomeron. For Bjorken-$x < 1 \cdot 10^{-3}$, $\xpom F^{\rm D(3)}_2$ shows positive $\log Q^2$ scaling violations, while for $x \ge 5 \cdot 10^{-3}$ negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.
Proton structure function F2 at Q**2 = 25 GeV**2.
Proton structure function F2 at Q**2 = 35 GeV**2.
Proton structure function F2 at Q**2 = 45 GeV**2.