Version 2
Precision measurement of forward $Z$ boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Abellán Beteta, C. ; et al.
JHEP 07 (2022) 026, 2022.
Inspire Record 1990313 DOI 10.17182/hepdata.132011

A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.

27 data tables

Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.

Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

More…

Observation of an exotic narrow doubly charmed tetraquark

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellán Beteta, Carlos ; et al.
Nature Phys. 18 (2022) 751-754, 2022.
Inspire Record 1915457 DOI 10.17182/hepdata.114869

Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. The observation of a new type of hadronic state, a doubly charmed tetraquark containing two charm quarks, an anti-$u$ and an anti-$d$ quark, is reported using data collected by the LHCb experiment at the Large Hadron Collider. This exotic state with a mass of about 3875 MeV$/c^2$ manifests itself as a narrow peak in the mass spectrum of $D^0D^0\pi^+$ mesons just below the $D^{*+}D^0$ mass threshold. The near threshold mass together with a strikingly narrow width reveals the resonance nature of the state.

2 data tables

Distribution of $D^0 D^0 \pi^+$ mass where the contribution of the non-$D^0$ background has been statistically subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.

Distribution of $D^0 D^0 \pi^+$ mass where the contribution of the non-$D^0$ background has been statistically subtracted by assigning the a weight to every candidate.


Study of the doubly charmed tetraquark $T_{cc}^+$

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellán Beteta, Carlos ; et al.
Nature Commun. 13 (2022) 3351, 2022.
Inspire Record 1915358 DOI 10.17182/hepdata.113470

An exotic narrow state in the $D^0D^0\pi^+$ mass spectrum just below the $D^{*+}D^0$ mass threshold is studied using a data set corresponding to an integrated luminosity of 9 fb$^{-1}$ acquired with the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV. The state is consistent with the ground isoscalar $T^+_{cc}$ tetraquark with a quark content of $cc\bar{u}\bar{d}$ and spin-parity quantum numbers $\mathrm{J}^{\mathrm{P}}=1^+$. Study of the $DD$ mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell $D^{*+}$ mesons is confirmed by the $D^0\pi^+$ mass distribution. The mass of the resonance and its coupling to the $D^{*}D$ system are analysed. Resonance parameters including the pole position, scattering length, effective range and compositeness are measured to reveal important information about the nature of the $T^+_{cc}$ state. In addition, an unexpected dependence of the production rate on track multiplicity is observed.

20 data tables

Distribution of $D^0 D^0 \pi^+$ mass where the contribution of the non-$D^0$ background has been statistically subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.

Mass distribution for $D^0 \pi^+$ pairs from selected $D^0 D^0 \pi^+$ candidates with a mass below the $D^{*+}D^0$ mass threshold with non-$D^0$ background subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.

$D^0 D^0$~mass distributions for selected candidates with the $D^0$ background subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.

More…

Measurement of $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=5$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Beteta, C. Abellán ; et al.
JHEP 11 (2021) 181, 2021.
Inspire Record 1915030 DOI 10.17182/hepdata.115512

The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.

20 data tables

Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.

More…

Version 2
Measurement of prompt charged-particle production in proton-proton collisions at a centre-of-mass energy of 13 TeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
JHEP 01 (2022) 166, 2022.
Inspire Record 1889335 DOI 10.17182/hepdata.136099

The differential cross-section of prompt inclusive production of long-lived charged particles in proton-proton collisions is measured using a data sample recorded by the LHCb experiment at a centre-of-mass energy of ${\sqrt{s} = 13\,\mathrm{TeV}}$. The data sample, collected with an unbiased trigger, corresponds to an integrated luminosity of ${5.4\,\mathrm{nb}^{-1}}$. The differential cross-section is measured as a function of transverse momentum and pseudorapidity in the ranges ${p_\mathrm{T} \in [0.08, 10)\,\mathrm{GeV}\,c^{-1}}$ and ${\eta \in [2.0, 4.8)}$ and is determined separately for positively and negatively charged particles. The results are compared with predictions from various hadronic-interaction models.

6 data tables

Double differential cross-sections of prompt inclusive production of long-lived negatively charged particles as a function of transverse momentum and pseudorapidity.

Double differential cross-sections of prompt inclusive production of long-lived positively charged particles as a function of transverse momentum and pseudorapidity.

Correlation for the uncertainties of the differential cross-section of prompt inclusive production of long-lived charged particles.

More…

Test of lepton universality in beauty-quark decays

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
Nature Phys. 18 (2022) 277-282, 2022.
Inspire Record 1852846 DOI 10.17182/hepdata.106855

The Standard Model of particle physics currently provides our best description of fundamental particles and their interactions. The theory predicts that the different charged leptons, the electron, muon and tau, have identical electroweak interaction strengths. Previous measurements have shown a wide range of particle decays are consistent with this principle of lepton universality. This article presents evidence for the breaking of lepton universality in beauty-quark decays, with a significance of 3.1 standard deviations, based on proton-proton collision data collected with the LHCb detector at CERN's Large Hadron Collider. The measurements are of processes in which a beauty meson transforms into a strange meson with the emission of either an electron and a positron, or a muon and an antimuon. If confirmed by future measurements, this violation of lepton universality would imply physics beyond the Standard Model, such as a new fundamental interaction between quarks and leptons.

1 data table

Likelihood function from the fit to the nonresonant $B^+$ --> $K^+\ell^+ \ell^−$ candidates profiled as a function of $R_K$.


Measurement of the $J/\psi$ pair production cross-section in $pp$ collisions at $\sqrt{s} = 13 \,{\mathrm{TeV}}$

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 06 (2017) 047, 2017.
Inspire Record 1505592 DOI 10.17182/hepdata.79484

The production cross-section of $J/\psi$ pairs is measured using a data sample of $pp$ collisions collected by the LHCb experiment at a centre-of-mass energy of $\sqrt{s} = 13 \,{\mathrm{TeV}}$, corresponding to an integrated luminosity of $279 \pm 11 \,{\mathrm{pb^{-1}}}$. The measurement is performed for $J/\psi$ mesons with a transverse momentum of less than $10 \,{\mathrm{GeV}}/c$ in the rapidity range $2.0<y<4.5$. The production cross-section is measured to be $15.2 \pm 1.0 \pm 0.9 \,{\mathrm{nb}}$. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the $J/\psi$ pair are measured and compared to theoretical predictions.

22 data tables

Differential cross-section of $J/\psi$ pair as a function of $p_{T}(J/\psi J/\psi)$.

Differential cross-section of $J/\psi$ pair as a function of $p_{T}(J/\psi)$.

Differential cross-section of $J/\psi$ pair as a function of $y(J/\psi J/\psi)$.

More…

Measurement of the $b$-quark production cross-section in 7 and 13 TeV $pp$ collisions

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
Phys.Rev.Lett. 118 (2017) 052002, 2017.
Inspire Record 1504058 DOI 10.17182/hepdata.79130

Measurements of the cross-section for producing \bquark quarks in the reaction $pp\to b\bar{b} X$ are reported in 7 and 13 TeV collisions at the LHC as a function of the pseudorapidity $\eta$ in the range $2<\eta<5$ covered by the acceptance of the LHCb experiment. The measurements are done using semileptonic decays of $b$-flavored hadrons decaying into a ground-state charmed hadron in association with a muon. The cross-sections in the covered $\eta$ range are $72.0\pm 0.3\pm6.8~\mu$b and $144\pm 1\pm 21~\mu$b for 7 and 13 TeV. The ratio is $2.00\pm0.02\pm0.26$, where the quoted uncertainties are statistical and systematic, respectively. The agreement with theoretical expectation is good at 7 TeV, but differs somewhat at 13 TeV. The measured ratio of cross-sections is larger at lower $\eta$ than the model prediction.

3 data tables

The cross-section as a function of $\eta$ for $pp \to H_b X$, where $H_b$ is a hadron that contains either a $b$ or a $\bar{b}$ quark, but not both, at center-of-mass energy of 7 TeV. The first uncertainty is statistical and the second systematic. To get the differential cross-section in each interval multiply by a factor two.

The cross-section as a function of $\eta$ for $pp \to H_b X$, where $H_b$ is a hadron that contains either a $b$ or a $\bar{b}$ quark, but not both, at center-of-mass energy of 13 TeV. The first uncertainty is statistical and the second systematic. To get the differential cross-section in each interval multiply by a factor two.

The ration of the cross-sections as a function of $\eta$ for $pp \to H_b X$, where $H_b$ is a hadron that contains either a $b$ or a $\bar{b}$ quark, but not both, for center-of-mass energies of 13 and 7 TeV. The first uncertainty is statistical and the second systematic.


Version 2
Measurements of prompt charm production cross-sections in $pp$ collisions at $\sqrt{s} = 5\,$TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 06 (2017) 147, 2017.
Inspire Record 1490663 DOI 10.17182/hepdata.74708

Production cross-sections of prompt charm mesons are measured using data from $pp$ collisions at the LHC at a centre-of-mass energy of $5\,$TeV. The data sample corresponds to an integrated luminosity of $8.60\pm0.33\,$pb$^{-1}$ collected by the LHCb experiment. The production cross-sections of $D^0$, $D^+$, $D_s^+$, and $D^{*+}$ mesons are measured in bins of charm meson transverse momentum, $p_{\text{T}}$, and rapidity, $y$. They cover the rapidity range $2.0<y<4.5$ and transverse momentum ranges $0 < p_{\text{T}} < 10\, \text{GeV}/c$ for $D^0$ and $D^+$ and $1 < p_{\text{T}} < 10\, \text{GeV}/c$ for $D_s^+$ and $D^{*+}$ mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of $1 < p_{\text{T}} < 8\, \text{GeV}/c$ are determined to be \sigma(pp\rightarrow D^0 X) = 1004 \pm 3 \pm 54\,\mu\text{b} \sigma(pp\rightarrow D^+ X) = 402 \pm 2 \pm 30\,\mu\text{b} \sigma(pp\rightarrow D_s^+ X) = 170 \pm 4 \pm 16\,\mu\text{b} \sigma(pp\rightarrow D^{*+} X)= 421 \pm 5 \pm 36\,\mu\text{b} where the uncertainties are statistical and systematic, respectively.

28 data tables

Differential production cross-sections for prompt $D^{0} + \bar{D}^{0}$ mesons in bins of $(p_{\mathrm{T}}, y)$. The first uncertainty is statistical, and the second is the total systematic.

Differential production cross-sections for prompt $D^{0} + \bar{D}^{0}$ mesons in bins of $(p_{\mathrm{T}}, y)$. The first uncertainty is statistical, and the second is the total systematic.

Differential production cross-sections for prompt $D^{+} + D^{-}$ mesons in bins of $(p_{\mathrm{T}}, y)$. The first uncertainty is statistical, and the second is the total systematic.

More…