Showing 4 of 4 results
Measurements of both the inclusive and differential production cross sections of a top-quark-top-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. Final states with two, three or four isolated leptons (electrons or muons) are targeted. The measurements use the data recorded by the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider during the years 2015-2018, corresponding to an integrated luminosity of $140$ fb$^{-1}$. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z}= 0.86 \pm 0.04~\mathrm{(stat.)} \pm 0.04~\mathrm{(syst.)}~$pb and found to be in agreement with the most advanced Standard Model predictions. The differential measurements are presented as a function of a number of observables that probe the kinematics of the $t\bar{t}Z$ system. Both the absolute and normalised differential cross-section measurements are performed at particle level and parton level for specific fiducial volumes, and are compared with NLO+NNLL theoretical predictions. The results are interpreted in the framework of Standard Model effective field theory and used to set limits on a large number of dimension-6 operators involving the top quark. The first measurement of spin correlations in $t\bar{t}Z$ events is presented: the results are in agreement with the Standard Model expectations, and the null hypothesis of no spin correlations is disfavoured with a significance of $1.8$ standard deviations.
All the entries of this HEP data record are listed. Figure and Table numbers are the same as in the paper.
Definition of the dilepton signal regions.
Definition of the trilepton signal regions.
Definition of the tetralepton signal regions.
Definition of the fiducial volumes at particle- and parton-level. Leptons refer exclusively to electrons and muons - they are dressed with additional radiation at particle-level, but not at parton-level.
Definition of the dilepton $t\bar{t}$ validation regions.
Pre-fit distribution of the number of $b$-jets in 2L-$e\mu$-6j2b, this distribution is not used in the fit.
Pre-fit distribution of the DNN output 2L-$e\mu$-6j1b, this distribution is not used in the fit.
Pre-fit distribution of the DNN output 2L-$e\mu$-5j2b, this distribution is not used in the fit.
Pre-fit distribution of the DNN output 2L-$e\mu$-6j2b, this distribution is not used in the fit.
Definition of the tetralepton control region.
Definition of the trilepton fakes control regions.
Pre-fit distribution of jet multiplicity in CR-$t\bar{t}$-e region.
Pre-fit distribution of loose lepton transverse momentum in CR-$t\bar{t}$-$\mu$ region.
Pre-fit distribution of the transverse mass of the trailing lepton and the missing transverse momentum in CR-Z-e region.
Post-fit distribution of jet multiplicity in CR-$t\bar{t}$-e region
Post-fit distribution of loose lepton transverse momentum in CR-$t\bar{t}$-$\mu$ region
Post-fit distribution of the transverse mass of the trailing lepton and the missing transverse momentum in CR-Z-e region
Post-fit distribution of NN output in SR-2L-5j2b region.
Post-fit distribution of NN output in SR-2L-6j1b region.
Post-fit distribution of NN output in SR-2L-6j2b region.
Post-fit distribution of DNN-$t\bar{t}Z$ output in 3L-SR-ttZ region.
Post-fit distribution of DNN-$t\bar{t}Z$ outputt in 3L-SR-tZq region.
Post fit events yields in 3L-SR-WZ region.
Post-fit distribution of NN output in 4L-SR-SF region.
Post-fit distribution of NN output in 4L-SR-DF region.
Post-fit distribution of b-tagger output for leading b-jet in 4L-CR-ZZ region.
Measured values of the background normalizations obtained from the combined fit. The uncertainties include statistical and systematic sources.
Measured $\sigma_{t\bar{t}\text{Z}}$ cross sections obtained from the fits in the different lepton channels. The uncertainties include statistical and systematic sources.
Grouped impact of systematic uncertainties in the combined inclusive fit to data.
Unfolded absolute cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 8 top-left).
Unfolded absolute cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 8 top-right).
Unfolded normalized cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 8 bottom-left).
Unfolded normalized cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 8 bottom-right).
Unfolded absolute cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 17 top-left and Figure 11 top-left).
Unfolded absolute cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 17 top-right).
Unfolded normalized cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 17 bottom-left).
Unfolded normalized cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 17 bottom-right).
Unfolded absolute cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 18 top-left and Figure 11 top-right).
Unfolded absolute cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 18 top-right).
Unfolded normalized cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 18 bottom-left).
Unfolded normalized cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 18 bottom-right).
Unfolded absolute cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 19 top-left and Figure 11 bottom-left).
Unfolded absolute cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 19, top-right).
Unfolded normalized cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 19, bottom-left).
Unfolded normalized cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 19, bottom-right).
Unfolded absolute cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 20 top-left and Figure 11 bottom-right).
Unfolded absolute cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 20, top-right).
Unfolded normalized cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 20, bottom-left)
Unfolded normalized cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 20, bottom-right)
Unfolded absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 21 top-left and Figure 12 top-left).
Unfolded absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 21, top-right).
Unfolded normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 21, bottom-left).
Unfolded normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 21, top-right).
Unfolded absolute cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 22 top-left and Figure 12 bottom-left).
Unfolded absolute cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 22, top-right).
Unfolded normalized cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 22, bottom-left).
Unfolded normalized cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 22, bottom-right).
Unfolded absolute cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 23 top-left and Figure 12 bottom-right).
Unfolded absolute cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 23, top-right).
Unfolded normalized cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 23, bottom-left).
Unfolded normalized cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 23, bottom-right).
Unfolded absolute cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 24 top-left and Figure 12 top-right).
Unfolded absolute cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 24, top-right).
Unfolded normalized cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 24, bottom-left).
Unfolded normalized cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 24, bottom-right).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level (Figure 25 top-left and Figure 9 top-left).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level (Figure 25 top-right).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level (Figure 25 bottom-left).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level (Figure 25 bottom-right).
Unfolded absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at particle-level (Figure 26 top-left and Figure 10 bottom-left).
Unfolded absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at parton-level (Figure 26 top-right).
Unfolded normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at particle-level (Figure 26 bottom-left).
Unfolded normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at parton-level (Figure 26 bottom-right).
Unfolded absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at particle-level (Figure 27 top-left and Figure 10 bottom-right).
Unfolded absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at parton-level (Figure 27 top-right).
Unfolded normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at particle-level (Figure 27 bottom-left).
Unfolded normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at parton-level (Figure 27 bottom-right).
Unfolded absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at particle-level (Figure 28 top-left and Figure 10 top-left).
Unfolded absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at parton-level (Figure 28 top-right).
Unfolded normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at particle-level (Figure 28 bottom-left).
Unfolded normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at parton-level (Figure 28 bottom-right).
Unfolded absolute cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level (Figure 29 left and Figure 9 bottom-left).
Unfolded normalized cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level (Figure 29 right).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at particle-level (Figure 30 top-left and Figure 9 top-right).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at parton-level (Figure 30 top-right).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at particle-level (Figure 30 bottom-left).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at parton-level (Figure 30 bottom-right).
Unfolded absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at particle-level (Figure 31 top-left and Figure 10 top-right).
Unfolded absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at parton-level (Figure 31 top-right).
Unfolded normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at particle-level (Figure 31 bottom-left).
Unfolded normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at parton-level (Figure 31 bottom-right).
Unfolded absolute cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level (Figure 32 left and Figure 9 bottom-right).
Unfolded normalized cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level (Figure 32 right).
Bootstrap replicas (0-499) for data in all regions used in inclusive cross section measurement. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data in all regions used in inclusive cross section measurement. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta\Phi(t\bar{t}, Z)|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta\Phi(t\bar{t}, Z)|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta\Phi(Z, t_{lep})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta\Phi(Z, t_{lep})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $m^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $m^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $N_{\text{jets}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $N_{\text{jets}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|y^{t\bar{t}Z}|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|y^{t\bar{t}Z}|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $H_{\text{T}}^{\text{l}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $H_{\text{T}}^{\text{l}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $y^{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $y^{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p_{T}^{\mathrm{top}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p_{T}^{\mathrm{top}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable cos $\theta^{*}_{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable cos $\theta^{*}_{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p_{\text{T}}^{\ell, non-Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p_{\text{T}}^{\ell, non-Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $H_{\text{T}}^{\text{l}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $H_{\text{T}}^{\text{l}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $m^{t\bar{t}Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $m^{t\bar{t}Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $N_{\text{jets}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $N_{\text{jets}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta y(Z, t_{lep})|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta y(Z, t_{lep})|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p^{Z}_{T}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p^{Z}_{T}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p_{T}^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p_{T}^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Parton-level acceptance and selection efficiency histograms for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable.
Parton-level acceptance and selection efficiency histograms for $|\Delta y(Z, t_{lep})|$ variable.
Parton-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Parton-level acceptance and selection efficiency histograms for $p_{\text{T}}^{\ell, non-Z}$ variable.
Parton-level acceptance and selection efficiency histograms for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable.
Parton-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Parton-level acceptance and selection efficiency histograms for cos $\theta_{Z}^{*}$ variable.
Parton-level acceptance and selection efficiency histograms for $p^{Z}_{T}$ variable.
Parton-level acceptance and selection efficiency histograms for $|y^{Z}$| variable.
Parton-level acceptance and selection efficiency histograms for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable.
Parton-level acceptance and selection efficiency histograms for $m^{t\bar{t}}$ variable.
Parton-level acceptance and selection efficiency histograms for $m^{t\bar{t}Z}$ variable.
Parton-level acceptance and selection efficiency histograms for $p_{T}^{\mathrm{top}}$ variable.
Parton-level acceptance and selection efficiency histograms for $p_{T}^{t\bar{t}}$ variable.
Parton-level acceptance and selection efficiency histograms for $|y^{t\bar{t}Z}|$ variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta y(Z, t_{lep})|$ variable.
Particle-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Particle-level acceptance and selection efficiency histograms for $N_{\text{jets}}$ variable.
Particle-level acceptance and selection efficiency histograms for $p_{\text{T}}^{\ell, non-Z}$ variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable.
Particle-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Particle-level acceptance and selection efficiency histograms for $N_{\text{jets}}$ variable.
Particle-level acceptance and selection efficiency histograms for cos $\theta_{Z}^{*}$ variable.
Particle-level acceptance and selection efficiency histograms for $p^{Z}_{T}$ variable.
Particle-level acceptance and selection efficiency histograms for $|y^{Z}$| variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable.
Particle-level acceptance and selection efficiency histograms for $m^{t\bar{t}}$ variable.
Particle-level acceptance and selection efficiency histograms for $m^{t\bar{t}Z}$ variable.
Particle-level acceptance and selection efficiency histograms for $p_{T}^{\mathrm{top}}$ variable.
Particle-level acceptance and selection efficiency histograms for $p_{T}^{t\bar{t}}$ variable.
Particle-level acceptance and selection efficiency histograms for $|y^{t\bar{t}Z}|$ variable.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-4L-DF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-4L-SF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-4L-DF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-4L-SF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at particle-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at particle-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at parton-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at parton-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-3L-tZq.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-3L-WZ.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-4L-DF.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-4L-SF.
Migration matrix for $|y^{Z}$| variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-3L-tZq.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-3L-WZ.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-4L-DF.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-4L-SF.
Migration matrix for $|y^{Z}$| variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-4L-DF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-4L-SF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-4L-DF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-4L-SF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region CR-4L-ZZ.
Covariance matrix for absolute cross section as a function of $p_{T}^{\mathrm{top}}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{\mathrm{top}}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p_{T}^{\mathrm{top}}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{\mathrm{top}}$ at parton-level.
Covariance matrix for absolute cross section as a function of $p_{T}^{t\bar{t}}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{t\bar{t}}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p_{T}^{t\bar{t}}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{t\bar{t}}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at parton-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}Z}$ at particle-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}Z}$ at particle-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}Z}$ at parton-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}Z}$ at parton-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}}$ at particle-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}}$ at particle-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}}$ at parton-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|y^{t\bar{t}Z}|$ at particle-level.
Covariance matrix for normalized cross section as a function of $|y^{t\bar{t}Z}|$ at particle-level.
Covariance matrix for absolute cross section as a function of $|y^{t\bar{t}Z}|$ at parton-level.
Covariance matrix for normalized cross section as a function of $|y^{t\bar{t}Z}|$ at parton-level.
Covariance matrix for absolute cross section as a function of cos $\theta_{Z}^{*}$ at particle-level.
Covariance matrix for normalized cross section as a function of cos $\theta_{Z}^{*}$ at particle-level.
Covariance matrix for absolute cross section as a function of cos $\theta_{Z}^{*}$ at parton-level.
Covariance matrix for normalized cross section as a function of cos $\theta_{Z}^{*}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ at parton-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ at in the tetralepton channel particle-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ at in the tetralepton channel particle-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ at in the tetralepton channel parton-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at parton-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level.
Covariance matrix for absolute cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level.
Covariance matrix for normalized cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level.
Covariance matrix for absolute cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level.
Covariance matrix for normalized cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level.
Covariance matrix for absolute cross section as a function of $p^{Z}_{T}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p^{Z}_{T}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p^{Z}_{T}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p^{Z}_{T}$ at parton-level.
Covariance matrix for absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|y^{Z}$| at particle-level.
Covariance matrix for normalized cross section as a function of $|y^{Z}$| at particle-level.
Covariance matrix for absolute cross section as a function of $|y^{Z}$| at parton-level.
Covariance matrix for normalized cross section as a function of $|y^{Z}$| at parton-level.
Ranking of nuisance parameters and background normalizations on signal strength for inclusive cross section measurement in combination of all channels
Observed and expected 68% and 95% credible intervals for the top-boson operators, in the marginalised linear fit.
Observed and expected 68% and 95% credible intervals for the top-boson operators, in the marginalised quadratic fit.
Observed and expected 68% and 95% credible intervals for the top-boson operators, in the independent quadratic fits (allowing only one Wilson Coefficient to be non-zero).
Observed and expected 68% and 95% credible intervals for the four-quark operators, in the marginalised linear fit.
Observed and expected 68% and 95% credible intervals for the four-quark operators, in the marginalised quadratic fit.
Observed and expected 68% and 95% credible intervals for the four-quark operators, in the independent quadratic fits (allowing only one Wilson Coefficient to be non-zero).
Observed and expected 68% and 95% credible intervals for Fisher-rotated directions of EFT sensitivity, in the marginalised linear fit.
Correlation matrix of the input particle-level observables used in the EFT fit.
Measurements of both the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. The measurements are performed by targeting final states with three or four isolated leptons (electrons or muons) and are based on $\sqrt{s} = 13$ TeV proton-proton collision data with an integrated luminosity of 139 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z} = 0.99 \pm 0.05$ (stat.) $\pm 0.08$ (syst.) pb, in agreement with the most precise theoretical predictions. The differential measurements are presented as a function of a number of kinematic variables which probe the kinematics of the $t\bar{t}Z$ system. Both absolute and normalised differential cross-section measurements are performed at particle and parton levels for specific fiducial volumes and are compared with theoretical predictions at different levels of precision, based on a $\chi^{2}/$ndf and $p$-value computation. Overall, good agreement is observed between the unfolded data and the predictions.
The measured $t\bar{t}\text{Z}$ cross-section value and its uncertainty based on the fit results from the combined trilepton and tetralepton channels. The value corresponds to the phase-space region where the difermion mass from the Z boson decay lies in the range $70 < m_{f\bar{f}} < 110$ GeV.
List of relative uncertainties of the measured inclusive $t\bar{t}\text{Z}$ cross section from the combined fit. The uncertainties are symmetrised for presentation and grouped into the categories described in the text. The quadratic sum of the individual uncertainties is not equal to the total uncertainty due to correlations introduced by the fit.
The definitions of the trilepton signal regions: for the inclusive measurement, a combination of the regions with pseudo-continuous $b$-tagging 3$\ell$-Z-1$b$4$j$-PCBT and 3$\ell$-Z-2$b$3$j$-PCBT is used, whereas for the differential measurement, only the region 3$\ell$-Z-2$b$3$j$, with a fixed $b$-tagging WP is employed.
The definitions of the four tetralepton signal regions. The regions are defined to target different $b$-jet multiplicities and flavour combinations of the non-Z leptons.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|$ in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised parton-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the absolute particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}$ of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the absolute value of rapidity of the $Z$ boson in the 3$\ell$+4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{l \textrm{non-}Z}$ in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta y (Z, t_{\textrm{lep}})|/\pi$ in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 3$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $|\Delta \phi (t\bar{t}, Z)|/\pi$ in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the $p_{\textrm{T}}^{t\bar{t}}$ in the 4$\ell$ channel.
The total correlation matrix of the normalised particle-level differential cross-section measured in the fiducial phase-space as a function of the number of jets in the 4$\ell$ channel.
Measurements of differential cross-sections of top-quark pair production in fiducial phase-spaces are presented as a function of top-quark and $t\bar{t}$ system kinematic observables in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$=13 TeV. The data set corresponds to an integrated luminosity of $3.2$ fb${}^{-1}$, recorded in 2015 with the ATLAS detector at the CERN Large Hadron Collider. Events with exactly one electron or muon and at least two jets in the final state are used for the measurement. Two separate selections are applied that each focus on different top-quark momentum regions, referred to as resolved and boosted topologies of the $t\bar{t}$ final state. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations by means of calculated $\chi^2$ and $p$-values.
Covariance matrix of the absolute cross-section as function of the top quark pT, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix of the relative cross-section as function of the top quark pT, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix for the absolute cross-section as function of the hadronic top-quark top quark pT, accounting for the statistic and systematic uncertainties in the boosted topology.
Covariance matrix for the relative cross-section as function of the hadronic top-quark top quark pT, accounting for the statistic and systematic uncertainties in the boosted topology.
Covariance matrix of the absolute cross-section as function of the absolute value of the rapidity of the top quark, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix of the relative cross-section as function of the absolute value of the rapidity of the top quark, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix for the absolute cross-section as function of the absolute value of the rapidity of the top quark, accounting for the statistic and systematic uncertainties in the boosted topology.
Covariance matrix for the relative cross-section as function of the absolute value of the rapidity of the top quark, accounting for the statistic and systematic uncertainties in the boosted topology.
Covariance matrix of the absolute cross-section as function of the mass of the tt̄ system, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix of the relative cross-section as function of the mass of the tt̄ system, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix of the absolute cross-section as function of the tt̄ system pT, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix of the relative cross-section as function of the tt̄ system pT, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix of the absolute cross-section as function of the absolute value of the rapidity of the tt̄ system, accounting for the statistical and systematic uncertainties in the resolved topology.
Covariance matrix of the absolute cross-section as function of the absolute value of the rapidity of the tt̄ system, accounting for the statistical and systematic uncertainties in the resolved topology.
Table of systematic uncertainties for the absolute differential cross-section at particle level for the top quark transverse momentum in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the relative differential cross-section at particle level for the top quark transverse momentum in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the absolute differential cross-section at particle level for the absolute value of the top quark rapidity in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the relative differential cross-section at particle level for the absolute value of the top quark rapidity in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the absolute differential cross-section at particle level for the tt̄ system transverse momentum in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the relative differential cross-section at particle level for the tt̄ system transverse momentum in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the absolute differential cross-section at particle level for the absolute value of the tt̄ system rapidity in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the relative differential cross-section at particle level for the absolute value of the tt̄ system rapidity in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the absolute differential cross-section at particle level for the mass of the tt̄ system in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the relative differential cross-section at particle level for the mass of the tt̄ system in the resolved regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the absolute differential cross-section at particle level for the top quark transverse momentum in the boosted regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the relative differential cross-section at particle level for the top quark transverse momentum in the boosted regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the absolute differential cross-section at particle level for the absolute value of the top quark rapidity in the boosted regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Table of systematic uncertainties for the relative differential cross-section at particle level for the absolute value of the top quark rapidity in the boosted regime. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text.
Measurements of normalized differential cross-sections of top-quark pair production are presented as a function of the top-quark, $t\bar{t}$ system and event-level kinematic observables in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV}. The observables have been chosen to emphasize the $t\bar{t}$ production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higher-order corrections. The dataset corresponds to an integrated luminosity of 20.3 fb$^{-1}$, recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of the jets tagged as originating from a $b$-quark. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the hadronic top-quark transverse momentum $p_{T}^{t}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the hadronic top-quark transverse momentum $p_{T}^{t}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the hadronic top-quark absolute rapidity $|y^{t}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the hadronic top-quark absolute rapidity $|y^{t}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute out-of-plane momentum $|p_{out}^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute out-of-plane momentum $|p_{out}^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for $y_{boost}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $y_{boost}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for $\chi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $\chi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for $R_{Wt}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $R_{Wt}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute rapidity $|y^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute rapidity $|y^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the top-quark transverse momentum $p_{T}^{t}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the top-quark transverse momentum $p_{T}^{t}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the top-quark absolute rapidity $|y^{t}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the top-quark absolute rapidity $|y^{t}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute out-of-plane momentum $|p_{out}^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system absolute out-of-plane momentum $|p_{out}^{t\bar{t}}|$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for $y_{boost}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $y_{boost}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for $\chi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Full phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for $\chi^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the ratio of the hadronic W and the hadronic top transverse momenta $R_{Wt}$.
Relative statistics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the ratio of the hadronic W and the hadronic top transverse momenta $R_{Wt}$.
Absolute systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the ratio of the hadronic W and the hadronic top transverse momenta $R_{Wt}$.
Relative systematics-only correlation matrix of the fiducial phase-space differential cross-section as a function of the ratio of the hadronic W and the hadronic top transverse momenta $R_{Wt}$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t$}$ system absolute rapidity $|y^{t\bar{t}}|$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark transverse momentum $p_{T}^{t}$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the hadronic top-quark absolute rapidity $|y^{t}|$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system out-of-plane momentum $|p_{out}^{t\bar{t}}|$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the $t\bar{t}$ system azimuthal angle $\Delta \phi^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the the scalar sum of the hadronic and leptonic top-quark transverse momenta $H_{T}^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the longitudinal boost $y_{boost}^{t\bar{t}}$.
Absolute statistics-only correlation matrix of the full phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Relative statistics-only correlation matrix of the full phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Absolute systematics-only correlation matrix of the full phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Relative systematics-only correlation matrix of the full phase-space differential cross-section as a function of the production angle $\chi^{t\bar{t}}$.
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and |$p_{out}^{t\bar{t}}$| (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $\chi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $\Delta\phi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15]
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $\chi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $\Delta\phi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15]
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $\Delta\phi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15]
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $|y^{t\bar{t}}|$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5] Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $|y^{t\bar{t}}|$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5] Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $|y^{t\bar{t}}|$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5] Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $m^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $m^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $p_{T}^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from absolute spectra through the Bootstrap Method. The binning is the following: Rows: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and |$p_{out}^{t\bar{t}}$| (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $\chi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $\Delta\phi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15]
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between |$p_{out}^{t\bar{t}}$| (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-40, 40-80, 80-120, 120-170, 170-230, 230-600] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $\chi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $\Delta\phi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15]
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $\chi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [1-1.4, 1.4-1.9, 1.9-2.5, 2.5-3.2, 3.2-4.2, 4.2-5.5, 5.5-7.2, 7.2-9.3, 9.3-12, 12-20] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $\Delta\phi^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15]
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $\Delta\phi^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0.0-2.0, 2.0-2.75, 2.75-3.0, 3.0-3.15] Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $H_T^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $H_T^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-90, 90-140, 140-195, 195-255, 255-320, 320-385, 385-455, 455-530, 530-610, 610-695, 695-780, 780-865, 865-950, 950-1041, 1041-1500] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $y_{boost}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $y_{boost}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-1, 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-2] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $|y^{t,had}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5]
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $|y^{t,had}|$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, 1.6-2.5] Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t,had}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $p_{T}^{t,had}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-60, 60-100, 100-150, 150-200, 200-260, 260-320, 320-400, 400-500] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $|y^{t\bar{t}}|$ (rows) in the 4-jet inclusive configuration and $|y^{t\bar{t}}|$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5] Columns: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5]
Statistical correlation matrix between $|y^{t\bar{t}}|$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5] Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $|y^{t\bar{t}}|$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.3, 1.3-2.5] Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $m^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $m^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV Columns: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV
Statistical correlation matrix between $m^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [345-400, 400-470, 470-550, 550-650, 650-800, 800-1100, 1100-1600] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
Statistical correlation matrix between $p_{T}^{t\bar{t}}$ (rows) in the 4-jet inclusive configuration and $p_{T}^{t\bar{t}}$ (columns) in the 4-jet inclusive configuration, obtained at parton level from relative spectra through the Bootstrap Method. The binning is the following: Rows: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV Columns: [0-20, 20-45, 45-75, 75-120, 120-190, 190-300] GeV
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.