Production of $\Lambda_\mathrm{c}^+$ baryons in proton-proton and lead-lead collisions at $\sqrt{s_\mathrm{NN}}=$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 803 (2020) 135328, 2020.
Inspire Record 1738943 DOI 10.17182/hepdata.88290

The differential cross sections of $\Lambda_\mathrm{c}^+$ baryon production are measured via the exclusive decay channel $\Lambda_\mathrm{c}^+ \to $pK$^-\pi^+$, as a function of transverse momentum ($p_\mathrm{T}$) in proton-proton (pp) and lead-lead (PbPb) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV with the CMS detector at the LHC. The measurement is performed within the $\Lambda_\mathrm{c}^+$ rapidity interval $|y|<$1.0 in the $p_\mathrm{T}$ range of 5-20 GeV/$c$ in pp and 10-20 GeV/$c$ in PbPb collisions. The observed yields of $\Lambda_\mathrm{c}^+$ for $p_\mathrm{T}$ of 10-20 GeV/$c$ suggest a possible suppression in central PbPb collisions compared to pp collisions. The $\Lambda_\mathrm{c}^+/$D$^0$ production ratio in pp collisions is compared to theoretical models. In PbPb collisions, this ratio is consistent with the result from pp collisions in their common $p_\mathrm{T}$ range.

5 data tables match query

The $p_{T}$-differential cross sections for inclusive $\Lambda_{c}^{+}$ production in pp collisions. The uncertainties associated with the $\Lambda_{c}^{+} \to pK^{-}\pi^{+}$ branching fraction and subresonant contributions, the luminosity and the nonprompt fraction contribute only to the overall normalization and are labeled global uncertainties ($21\%$).

The $T_{AA}$-scaled yields for inclusive $\Lambda_{c}^{+}$ baryon in three centrality regions of PbPb collisions. The uncertainties associated with the $\Lambda_{c}^{+} \to pK^{-}\pi^{+}$ branching fraction and subresonant contributions, the MB selection efficiency and the nonprompt fraction contribute only to the overall normalization and are labeled global uncertainties ($31\%$).

The nuclear modification factor $R_{AA}$ versus $\langle N_\text{part} \rangle$ for inclusive $\Lambda_{c}^{+}$ production in the centrality range $0-100\%$, $0-30\%$ and $30-100\%$. The systematic uncertainties include the PbPb systematic uncertainties associated with the signal extraction, $p_{T}$ spectrum, selection criteria, track reconstruction, and $T_{AA}$. The pp uncertainty includes the same uncertainties for the pp data (except for $T_{AA}$) plus the uncertainties in pp yield and luminosity. The global PbPb uncertainty includes the uncertainty from the nonprompt fraction(accounting for a partial cancelation between pp and PbPb) and MB selection efficiency.

More…

Measurement of quark- and gluon-like jet fractions using jet charge in PbPb and pp collisions at 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2020) 115, 2020.
Inspire Record 1789224 DOI 10.17182/hepdata.88294

The momentum-weighted sum of the electric charges of particles inside a jet, known as jet charge, is sensitive to the electric charge of the particle initiating the parton shower. This paper presents jet charge distributions in $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV lead-lead (PbPb) and proton-proton (pp) collisions recorded with the CMS detector at the LHC. These data correspond to integrated luminosities of 404 $\mu$b$^{-1}$ and 27.4 pb$^{-1}$ for PbPb and pp collisions, respectively. Leveraging the sensitivity of the jet charge to fundamental differences in the electric charges of quarks and gluons, the jet charge distributions from simulated events are used as templates to extract the quark- and gluon-like jet fractions from data. The modification of these jet fractions is examined by comparing pp and PbPb data as a function of the overlap of the colliding Pb nuclei (centrality). This measurement tests the color charge dependence of jet energy loss due to interactions with the quark-gluon plasma. No significant modification between different centrality classes and with respect to pp results is observed in the extracted fractions of quark- and gluon-like jet fractions.

14 data tables match query

Unfolded jet charge measurements for the $p_{T}$-weighting factor $\kappa = 0.5$ and a minimum track $p_{T}$ of 1 GeV for inclusive jets in pp and PbPb data. The PbPb results are shown for different centrality regions.

The standard deviation of the jet charge distributions with different track $p_{T}$ thresholds and $\kappa$ value of 0.5 for pp collisions and in the various event centrality bins for PbPb collisions compared with the PYTHIA6 prediction.

The standard deviation of the jet charge distributions with different track $p_{T}$ thresholds and $\kappa$ value of 0.3 for pp collisions and in the various event centrality bins for PbPb collisions compared with the PYTHIA6 prediction.

More…

Measurement of b jet shapes in proton-proton collisions at $\sqrt{s} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2021) 054, 2021.
Inspire Record 1798501 DOI 10.17182/hepdata.89876

We present the first study of charged-hadron production associated with jets originating from b quarks in proton-proton collisions at a center-of-mass energy of 5.02 TeV. The data sample used in this study was collected with the CMS detector at the CERN LHC and corresponds to an integrated luminosity of 27.4 pb$^{-1}$. To characterize the jet substructure, the differential jet shapes, defined as the normalized transverse momentum distribution of charged hadrons as a function of angular distance from the jet axis, are measured for b jets. In addition to the jet shapes, the per-jet yields of charged particles associated with b jets are also quantified, again as a function of the angular distance with respect to the jet axis. Extracted jet shape and particle yield distributions for b jets are compared with results for inclusive jets, as well as with the predictions from the PYTHIA and HERWIG++ event generators.

10 data tables match query

The charged particle yield distribution $Y(\Delta r)$ of inclusive jets with $p_T > 120$ GeV and $1< p^{\text{trk}}_T < 12$ GeV are presented as functions of $\Delta r$ for differential $p_{\text{T}}^{\text{trk}}$ bin.

The charged particle yield distribution $Y(\Delta r)$ of b jets with $p_T > 120$ GeV and $1< p^{\text{trk}}_T < 12$ GeV are presented as functions of $\Delta r$ for differential $p_{\text{T}}^{\text{trk}}$ bin.

Charged particle yield distributions $Y(\Delta r)$ of inclusive jets with $1 < p_{\text{T}}^{\text{trk}} < 12$ GeV are presented as functions of $\Delta r$.Inclusive jets with $p_T > 120$ GeV and charged particles with $1 < p^{\text{trk}}_{\text{T}} < 12$ GeV are used to construct the distributions as functions of $\Delta r$ differential $p_{\text{T}}^{\text{trk}}$ bins.

More…

Measurement of the azimuthal anisotropy of $\Upsilon$(1S) and $\Upsilon$(2S) mesons in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 819 (2021) 136385, 2021.
Inspire Record 1801111 DOI 10.17182/hepdata.93880

The second-order Fourier coefficients ($v_2$) characterizing the azimuthal distribution of $\Upsilon$(1S) and $\Upsilon$(2S) mesons arising from PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV are studied. The $\Upsilon$ mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The data set corresponds to an integrated luminosity of 1.7 nb$^{-1}$. The scalar product method is used to extract the $v_2$ coefficients of the azimuthal distribution. Results are reported for the rapidity range $|y|$$\lt$ 2.4, with the transverse momentum 0 $\lt$$p_\mathrm{T}$$\lt$ 50 GeV/$c$, and in three centrality ranges of 10-30%, 30-50% and 50-90%. In contrast to the J/$\psi$ mesons, the measured $v_2$ values for the $\Upsilon$ mesons are found to be consistent with zero.

5 data tables match query

$v_{2}$ of $\Upsilon(\mathrm{1S})$ mesons as a function of collision centrality.

$v_{2}$ of $\Upsilon(\mathrm{1S})$ and $\Upsilon(\mathrm{2S})$ mesons integrated for 10-90% centrality range.

$v_{2}$ of $\Upsilon(\mathrm{1S})$ as a function of $p_{\mathrm{T}}$ in 10-90% centrality range.

More…

First measurement of large area jet transverse momentum spectra in heavy-ion collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2021) 284, 2021.
Inspire Record 1848440 DOI 10.17182/hepdata.93881

Jet production in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV is studied with the CMS detector at the LHC, using PbPb and pp data samples corresponding to integrated luminosities of 404 $\mu$b$^{-1}$ and 27.4 pb$^{-1}$, respectively. Jets with different areas are reconstructed using the anti-$k_\mathrm{T}$ algorithm by varying the distance parameter $R$. The measurements are performed using jets with transverse momenta ($p_\mathrm{T}$) greater than 200 GeV and in a pseudorapidity range of $|\eta|$$\lt$ 2. To reveal the medium modification of the jet spectra in PbPb collisions, the properly normalized ratio of spectra from PbPb and pp data is used to extract jet nuclear modification factors as functions of the PbPb collision centrality, $p_\mathrm{T}$ and, for the first time, as a function of $R$ up to 1.0. For the most central collisions, a strong suppression is observed for high-$p_\mathrm{T}$ jets reconstructed with all distance parameters, implying that a significant amount of jet energy is scattered to large angles. The dependence of jet suppression on $R$ is expected to be sensitive to both the jet energy loss mechanism and the medium response, and so the data are compared to several modern event generators and analytic calculations. The models considered do not fully reproduce the data.

18 data tables match query

Spectra of jets with |eta jet| < 2.0 for R = 0.2, for pp collisions and different centrality classes of PbPb collisions.

Spectra of jets with |eta jet| < 2.0 for R = 0.3, for pp collisions and different centrality classes of PbPb collisions.

Spectra of jets with |eta jet| < 2.0 for R = 0.4, for pp collisions and different centrality classes of PbPb collisions.

More…

Study of central exclusive $\pi^+\pi^-$ production in proton-proton collisions at $\sqrt{s} =$ 5.02 and 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 718, 2020.
Inspire Record 1784063 DOI 10.17182/hepdata.100551

Central exclusive and semiexclusive production of $\pi^+\pi^-$ pairs is measured with the CMS detector in proton-proton collisions at the LHC at center-of-mass energies of 5.02 and 13 TeV. The theoretical description of these nonperturbative processes, which have not yet been measured in detail at the LHC, poses a significant challenge to models. The two pions are measured and identified in the CMS silicon tracker based on specific energy loss, whereas the absence of other particles is ensured by calorimeter information. The total and differential cross sections of exclusive and semiexclusive central $\pi^+\pi^-$ production are measured as functions of invariant mass, transverse momentum, and rapidity of the $\pi^+\pi^-$ system in the fiducial region defined as transverse momentum $p_\mathrm{T}(\pi)$ $>$ 0.2 GeV and pseudorapidity $|\eta(\pi)|$ $<$ 2.4. The production cross sections for the four resonant channels f$_0(500)$, $\rho^0(770)$, f$_0(980)$, and f$_2(1270)$ are extracted using a simple model. These results represent the first measurement of this process at the LHC collision energies of 5.02 and 13 TeV.

6 data tables match query

Differential cross section as a function of the invariant mass of the pion pair at 5.02 TeV, compared with generator-level simulations.

Differential cross section as a function of the invariant mass of the pion pair at 13 TeV, compared with generator-level simulations.

Differential cross section as a function of the transverse momentum of the pion pair at 5.02 TeV, compared with generator-level simulations.

More…

Evidence for top quark production in nucleus-nucleus collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 125 (2020) 222001, 2020.
Inspire Record 1802092 DOI 10.17182/hepdata.93878

Ultrarelativistic heavy ion collisions recreate in the laboratory the thermodynamical conditions prevailing in the early universe up to 10$^{-6}$ seconds, thereby allowing the study of the quark-gluon plasma (QGP), a state of quantum chromodynamics (QCD) matter with deconfined partons. The top quark, the heaviest elementary particle known, is accessible in nucleus-nucleus collisions at the CERN LHC, and constitutes a novel probe of the QGP. Here, we report the first-ever evidence for the production of top quarks in nucleus-nucleus collisions, using lead-lead collision data at a nucleon-nucleon centre-of-mass energy of 5.02 TeV recorded by the CMS experiment. Two methods are used to measure the cross section for top quark pair production ($\sigma_\mathrm{t\bar{t}}$) via the decay into charged leptons (electrons or muons) and bottom quarks. One method relies on the leptonic information alone, and the second one exploits, in addition, the presence of bottom quarks. The measured cross sections, $\sigma_\mathrm{t\bar{t}} = $ 2.54 $^{+0.84}_{-0.74}$ and 2.03 $^{+0.71}_{-0.64}$ $\mu$b, respectively, are compatible with expectations from scaled proton-proton data and QCD predictions.

1 data table match query

Inclusive $\mathrm{t\bar{t}}$ cross sections measured with two methods, relying on the leptonic information alone ($2\ell_{\mathrm{OS}}$), and the second one exploits, in addition, the presence of bottom quarks ($2\ell_{\mathrm{OS}}+N_{\mathrm{b-tag}}$), in the combined $\mathrm{e}^+\mathrm{e}^-$, $\mu^+\mu^-$, and $\mathrm{e}^\pm\mu^\mp$ final states in PbPb collisions at 5.02 TeV, and pp results at $\sqrt{\smash[b]{s}}=5.02$ TeV (scaled by $A^2$) from JHEP 03 (2018) 115. The measurements are compared with theoretical predictions at NNLO+NNLL accuracy in QCD. The inner (outer) experimental uncertainty bars include statistical (statistical and systematic, added in quadrature) uncertainties. The inner (outer) theoretical uncertainty bands correspond to nuclear or free-nucleon PDF (PDF and scale, added in quadrature) uncertainties.


The production of isolated photons in PbPb and pp collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2020) 116, 2020.
Inspire Record 1788620 DOI 10.17182/hepdata.93877

The transverse energy ($E_\mathrm{T}^{\gamma}$) spectra of photons isolated from other particles are measured using proton-proton (pp) and lead-lead (PbPb) collisions at the LHC at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV with integrated luminosities of 27.4 pb$^{-1}$and 404 $\mu$b$^{-1}$ for pp and PbPb data, respectively. The results are presented for photons with 25 $<$ $E_\mathrm{T}^{\gamma}$ $<$ 200 GeV in the pseudorapidity range $|\eta|$ $<$ 1.44, and for different centrality intervals for PbPb collisions. Photon production in PbPb collisions is consistent with that in pp collisions scaled by the number of binary nucleon-nucleon collisions, demonstrating that photons do not interact with the quark-gluon plasma. Therefore, isolated photons can provide information about the initial energy of the associated parton in photon+jet measurements. The results are compared with predictions from the next-to-leading-order JETPHOX generator for different parton distribution functions (PDFs) and nuclear PDFs (nPDFs). The comparisons can help to constrain the nPDFs global fits.

4 data tables match query

Isolated photon spectra measured as a function of $E_{T}^{\gamma}$ for 0–10%, 10–30%, 30– 50%, 50–100%, and 0–100% PbPb collisions (scaled by $T_{AA}$) at 5.02TeV.

Isolated photon cross section measured as a function of $E_{T}^{\gamma}$ in pp collisions at 5.02TeV.

Nuclear modification factors $R_{AA}$ as a function of $E_{T}^{\gamma}$ measured in the 0–10%, 10–30%, 30–50%, and 50–100% centrality ranges in PbPb.

More…

Nuclear modification of $\Upsilon$ states in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Ambrogi, Federico ; et al.
Phys.Lett.B 835 (2022) 137397, 2022.
Inspire Record 2037640 DOI 10.17182/hepdata.88291

Production cross sections of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) states decaying into $\mu^+\mu^-$ in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for $\Upsilon$(1S) is found to be $R_\mathrm{pPb}(\Upsilon(1S))$ = 0.806 $\pm$ 0.024 (stat) $\pm$ 0.059 (syst). Similar results for the excited states indicate a sequential suppression pattern, such that $R_\mathrm{pPb}(\Upsilon(1S))$$\gt$$R_\mathrm{pPb}(\Upsilon(2S))$$\gt$$R_\mathrm{pPb}(\Upsilon(3S))$. The suppression is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum $p_\mathrm{T}^\Upsilon$ and center-of-mass rapidity $y_\mathrm{CM}^\Upsilon$ of the individual $\Upsilon$ state in the studied range $p_\mathrm{T}^\Upsilon$$\lt$ 30 GeV$/c$ and $\vert y_\mathrm{CM}^\Upsilon\vert$$\lt$ 1.93. Models that incorporate sequential suppression of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications.

31 data tables match query

Differential cross section times dimuon branching fraction of Y(1S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.

Differential cross section times dimuon branching fraction of Y(2S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.

Differential cross section times dimuon branching fraction of Y(3S) as a function of pT in pPb collisions. The global uncertainty arises from the integrated luminosity uncertainty in pPb collisions.

More…

Multiparticle correlation studies in pPb collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.C 101 (2020) 014912, 2020.
Inspire Record 1731568 DOI 10.17182/hepdata.88288

The second- and third-order azimuthal anisotropy Fourier harmonics of charged particles produced in pPb collisions, at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV, are studied over a wide range of event multiplicities. Multiparticle correlations are used to isolate global properties stemming from the collision overlap geometry. The second-order "elliptic" harmonic moment is obtained with high precision through four-, six-, and eight-particle correlations and, for the first time, the third-order "triangular" harmonic moment is studied using four-particle correlations. A sample of peripheral PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV that covers a similar range of event multiplicities as the pPb results is also analyzed. Model calculations of initial-state fluctuations in pPb and PbPb collisions can be directly compared to the high precision experimental results. This work provides new insight into the fluctuation-driven origin of the $v_3$ coefficients in pPb and PbPb collisions, and into the dominating overall collision geometry in PbPb collisions at the earliest stages of heavy ion interactions.

14 data tables match query

$v_2\{4\}$ as a function of $N_{trk}^{offline}$ in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

$v_2\{6\}$ as a function of $N_{trk}^{offline}$ in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

$v_2\{8\}$ as a function of $N_{trk}^{offline}$ in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

More…