The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at $\sqrt{s}=13$ TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity ($\rm{d} N_{ch}/\rm{d}\eta\sim26$) as measured in p-Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p-Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and Statistical Hadronisation Models (SHM).
Transverse momentum distributions of deuterons in the I V0M multiplicity class
Transverse momentum distributions of deuterons in the II V0M multiplicity class
Transverse momentum distributions of deuterons in the III V0M multiplicity class
A search for new massive particles decaying into a pair of Higgs bosons in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. Data were collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The search is performed for resonances with a mass between 0.8 and 3.5 TeV using events in which one Higgs boson decays into a bottom quark pair and the other decays into two W bosons that subsequently decay into a lepton, a neutrino, and a quark pair. The Higgs boson decays are reconstructed with techniques that identify final state quarks as substructure within boosted jets. The data are consistent with standard model expectations. Exclusion limits are placed on the product of the cross section and branching fraction for generic spin-0 and spin-2 massive resonances. The results are interpreted in the context of radion and bulk graviton production in models with a warped extra spatial dimension. These are the best results to date from searches for an HH resonance decaying to this final state, and they are comparable to the results from searches in other channels for resonances with masses below 1.5 TeV.
Observed and expected 95% CL upper limits on the product of the cross section and branching fraction to HH for a generic spin-0 (left) and spin-2 (right) boson X, as a function of mass. Example radion and bulk graviton predictions are also shown. The HH branching fraction is assumed to be 25 and 10%, respectively.
Observed and expected 95% CL upper limits on the product of the cross section and branching fraction to HH for a generic spin-0 (left) and spin-2 (right) boson X, as a function of mass. Example radion and bulk graviton predictions are also shown. The HH branching fraction is assumed to be 25 and 10%, respectively.
A search for supersymmetric particles produced in the vector boson fusion topology in proton-proton collisions is presented. The search targets final states with one or zero leptons, large missing transverse momentum, and two jets with a large separation in rapidity. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV collected in 2016 with the CMS detector at the LHC. The observed dijet invariant mass and lepton-neutrino transverse mass spectra are found to be consistent with the standard model predictions. Upper limits are set on the cross sections for chargino ($\widetilde\chi_1^\pm$) and neutralino ($\widetilde\chi_2^0$) production with two associated jets. For a compressed mass spectrum scenario in which the $\widetilde\chi_1^\pm$ and $\widetilde\chi_2^0$ decays proceed via a light slepton and the mass difference between the lightest neutralino $\widetilde\chi_1^0$ and the mass-degenerate particles $\widetilde\chi_1^\pm$ and $\widetilde\chi_2^0$ is 1 (30) GeV, the most stringent lower limit to date of 112 (215) GeV is set on the mass of these latter two particles.
Selection efficiency on signal for each channel.
The observed $m_{T}$ and $m_{jj}$ distributions in the ejj (upper left), $\mu$~jj (upper right), $\tau_{h}$~jj (lower left), and $0\ell$~jj (lower right) signal regions compared with the post-fit SM background yields from the fit described in the text. The pre-fit background yields and shapes are determined using data-driven methods for the major backgrounds, and based on simulation for the smaller backgrounds. Expected signal distributions are overlaid. The last bin in the $m_{T}$ distributions of the $1\ell$~jj channels include all events with $m_{T} > 210$~GeV. The last bin of the $m_{jj}$ distributions of the $0\ell$~jj channel include all events with $m_{jj} > 3800$~GeV.
The observed $m_{T}$ and $m_{jj}$ distributions in the ejj (upper left), $\mu$~jj (upper right), $\tau_{h}$~jj (lower left), and $0\ell$~jj (lower right) signal regions compared with the post-fit SM background yields from the fit described in the text. The pre-fit background yields and shapes are determined using data-driven methods for the major backgrounds, and based on simulation for the smaller backgrounds. Expected signal distributions are overlaid. The last bin in the $m_{T}$ distributions of the $1\ell$~jj channels include all events with $m_{T} > 210$~GeV. The last bin of the $m_{jj}$ distributions of the $0\ell$~jj channel include all events with $m_{jj} > 3800$~GeV.
A search for the production of events containing three W bosons predicted by the standard model is reported. The search is based on a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the CMS experiment at the CERN LHC and corresponding to a total integrated luminosity of 35.9 fb$^{-1}$. The search is performed in final states with three leptons (electrons or muons), or with two same-charge leptons plus two jets. The observed (expected) significance of the signal for W$^\pm$W$^\pm$W$^\mp$ production is 0.60 (1.78) standard deviations, and the ratio of the measured signal yield to that expected from the standard model is 0.34 $^{+0.62}_{-0.34}$. Limits are placed on three anomalous quartic gauge couplings and on the production of massive axionlike particles.
Limits on anomalous quartic couplings at 95% CL.
Expected and observed 95% CL upper limits on the cross section times the branching ratio sigma(P P --> W+- a)B(a --> W+- W-+) as a function of ALP mass
Expected and observed 95% CL upper limits on the photophobic ALP model parameter 1/f_a as a function of ALP mass.
A general search is presented for a low-mass $\tau^-\tau^+$ resonance produced in association with a bottom quark. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The data are consistent with the standard model expectation. Upper limits at 95% confidence level on the cross section times branching fraction are determined for two signal models: a light pseudoscalar Higgs boson decaying to a pair of $\tau$ leptons produced in association with bottom quarks, and a low-mass boson X decaying to a $\tau$-lepton pair that is produced in the decay of a bottom-like quark B such that B $\to$ bX. Masses between 25 and 70 GeV are probed for the light pseudoscalar boson with upper limits ranging from 250 to 44 pb. Upper limits from 20 to 0.3 pb are set on B masses between 170 and 450 GeV for X boson masses between 20 and 70 GeV.
Observed $m_{\tau\tau}$ distribution in the $\mathrm{e}\tau_\mathrm{h}$ channel of the 1 b tag category, compared to the expected SM background contributions. The signal distributions for $\mathrm{b}\overline{\mathrm{b}}\mathrm{A}$ production with pseudoscalar mass 40 and 60 GeV are overlaid to illustrate the sensitivity. They are normalized to the cross section times branching fraction of 800 pb. The uncertainty band represents the sum in quadrature of statistical and systematic uncertainties obtained from the fit. The lower panel shows the ratio between the observed and expected events in each bin.
Observed $m_{\tau\tau}$ distribution in the $\mu\tau_\mathrm{h}$ channel of the 1 b tag category, compared to the expected SM background contributions. The signal distributions for $\mathrm{b}\overline{\mathrm{b}}\mathrm{A}$ production with pseudoscalar mass 40 and 60 GeV are overlaid to illustrate the sensitivity. They are normalized to the cross section times branching fraction of 800 pb. The uncertainty band represents the sum in quadrature of statistical and systematic uncertainties obtained from the fit. The lower panel shows the ratio between the observed and expected events in each bin.
Observed (black solid) and expected (black dotted) limits at 95% confidence level on the product of the the cross section for bbA prodcution and the branching fraction $\mathrm{A} \rightarrow \tau\tau$, obtained from the combination of the $\mathrm{e}\tau_\mathrm{h}$ and $\mu\tau_\mathrm{h}$ channels in the 1 b tag category, as a function of the A boson mass. The green and yellow bands represent the one and two standard deviation uncertainties in the expected limits.
A search for long-lived particles decaying into jets is presented. Data were collected with the CMS detector at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The search examines the distinctive topology of displaced tracks and secondary vertices. The selected events are found to be consistent with standard model predictions. For a simplified model in which long-lived neutral particles are pair produced and decay to two jets, pair production cross sections larger than 0.2 fb are excluded at 95% confidence level for a long-lived particle mass larger than 1000 GeV and proper decay lengths between 3 and 130 mm. Several supersymmetry models with gauge-mediated supersymmetry breaking or $R$-parity violation, where pair-produced long-lived gluinos or top squarks decay to several final-state topologies containing displaced jets, are also tested. For these models, in the mass ranges above 200 GeV, gluino masses up to 2300-2400 GeV and top squark masses up to 1350-1600 GeV are excluded for proper decay lengths approximately between 10 and 100 mm. These are the most restrictive limits to date on these models.
The distributions of vertex track multiplicity for data, simulated QCD multijet events, and simulated signal events. Data and simulated events are selected with the displaced-jet trigger. The offline $H_{T}$ is required to be larger than 400 $\mathrm{GeV}$, and the jets are required to have $p_{T}>50\ \mathrm{GeV}$ and $|\eta|<2.0$. Three benchmark signal distributions are shown (dashed lines) for the jet-jet model with $m_{X}=300\ \mathrm{GeV}$ and varying lifetimes. For visualization each signal process is given a cross section, $\sigma$, such that $\sigma\ 35.9\ \mathrm{fb}^{-1} = 1 \times 10^{6}$.
The distributions of vertex $L_{xy}$ significance for data, simulated QCD multijet events, and simulated signal events. Data and simulated events are selected with the displaced-jet trigger. The offline $H_{T}$ is required to be larger than 400 $\mathrm{GeV}$, and the jets are required to have $p_{T}>50\mathrm{GeV}$ and $|\eta|<2.0$. Three benchmark signal distributions are shown (dashed lines) for the jet-jet model with $m_{X}=300\ \mathrm{GeV}$ and varying lifetimes. For visualization each signal process is given a cross section, $\sigma$, such that $\sigma\ 35.9 \mathrm{fb}^{-1} = 1 \times 10^{6}$.
The distributions of cluster RMS for data, simulated QCD multijet events, and simulated signal events. Data and simulated events are selected with the displaced-jet trigger. The offline $H_{T}$ is required to be larger than 400 $\mathrm{GeV}$, and the jets are required to have $p_{T}>50\ \mathrm{GeV}$ and $|\eta|<2.0$. Three benchmark signal distributions are shown (dashed lines) for the jet-jet model with $m_{X}=300\ \mathrm{GeV}$ and varying lifetimes. For visualization each signal process is given a cross section, $\sigma$, such that $\sigma\ 35.9\ \mathrm{fb}^{-1} = 1 \times 10^{6}$.
A search is presented for charged Higgs bosons in the H$^{\pm}$ $\to$ $\tau^{\pm}\nu_\tau$ decay mode in the hadronic final state and in final states with an electron or muon. The search is based on proton-proton collision data recorded by the CMS experiment in 2016 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The results agree with the background expectation from the standard model. Upper limits at 95% confidence level are set on the production cross section times branching fraction to $\tau^{\pm}\nu_\tau$ for an H$^{\pm}$ in the mass range of 80 GeV to 3 TeV, including the region near the top quark mass. The observed limit ranges from 6 pb at 80 GeV to 5 fb at 3 TeV. The limits are interpreted in the context of the minimal supersymmetric standard model $m_\mathrm{h}^\mathrm{mod-}$ scenario.
The 95% CL upper limit on the production cross section for the Charged Higgs boson decaying into a tau-nu pair.
The production of charm jets in proton-proton collisions at a center-of-mass energy of $\sqrt{s}=7$ TeV was measured with the ALICE detector at the CERN Large Hadron Collider. The measurement is based on a data sample corresponding to a total integrated luminosity of $6.23$ ${\rm nb}^{-1}$, collected using a minimum-bias trigger. Charm jets are identified by the presence of a D$^0$ meson among their constituents. The D$^0$ mesons are reconstructed from their hadronic decay D$^0\rightarrow$K$^{-}\pi^{+}$. The D$^0$-meson tagged jets are reconstructed using tracks of charged particles (track-based jets) with the anti-$k_{\mathrm{T}}$ algorithm in the jet transverse momentum range $5
$p_{\rm T}$-differential cross section of charm jets tagged with D$^0$ mesons in pp collisions at $\sqrt{s}$ = 7 TeV.
Ratio of the $p_{\rm T}$-differential cross section of charm jets tagged with D$^0$ mesons to the inclusive jet cross section in pp collisions at $\sqrt{s}$ = 7 TeV.
$z_{||}^{\rm ch}$-differential cross section of D$^0$-meson tagged track-based jets in pp collisions at $\sqrt{s}$ = 7 TeV, with $p_{\rm T,D}$ > 2 GeV/$c$ and 5 < $p_{\rm T,jet}^{\rm ch}$ < 15 GeV/$c$.
A search for narrow and broad resonances with masses greater than 1.8 TeV decaying to a pair of jets is presented. The search uses proton-proton collision data at $\sqrt{s} =$ 13 TeV collected at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The background arising from standard model processes is predicted with the fit method used in previous publications and with a new method. The dijet invariant mass spectrum is well described by both data-driven methods, and no significant evidence for the production of new particles is observed. Model independent upper limits are reported on the production cross sections of narrow resonances, and broad resonances with widths up to 55% of the resonance mass. Limits are presented on the masses of narrow resonances from various models: string resonances, scalar diquarks, axigluons, colorons, excited quarks, color-octet scalars, W' and Z' bosons, Randall-Sundrum gravitons, and dark matter mediators. The limits on narrow resonances are improved by 200 to 800 GeV relative to those reported in previous CMS dijet resonance searches. The limits on dark matter mediators are presented as a function of the resonance mass and width, and on the associated coupling strength as a function of the mediator mass. These limits exclude at 95% confidence level a dark matter mediator with a mass of 1.8 TeV and width 1% of its mass or higher, up to one with a mass of 4.8 TeV and a width 45% of its mass or higher.
The observed and expected 95% CL upper limits on the universal quark coupling $g_{q}$ as a function of resonance mass for a vector mediator of interactions between quarks and dark matter.
The observed and expected 95% CL upper limits on the universal quark coupling $g_{q}^{'}$ as a function of resonance mass for a vector mediator of interactions between quarks.
Observed differential dijet spectrum. The cross-section is calculated by dividing the event yield by the bin width and luminosity.
Two related searches for phenomena beyond the standard model (BSM) are performed using events with hadronic jets and significant transverse momentum imbalance. The results are based on a sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 137 fb$^{-1}$. The first search is inclusive, based on signal regions defined by the hadronic energy in the event, the jet multiplicity, the number of jets identified as originating from bottom quarks, and the value of the kinematic variable $M_\mathrm{T2}$ for events with at least two jets. For events with exactly one jet, the transverse momentum of the jet is used instead. The second search looks in addition for disappearing tracks produced by BSM long-lived charged particles that decay within the volume of the tracking detector. No excess event yield is observed above the predicted standard model background. This is used to constrain a range of BSM models that predict the following: the pair production of gluinos and squarks in the context of supersymmetry models conserving $R$-parity, with or without intermediate long-lived charginos produced in the decay chain; the resonant production of a colored scalar state decaying to a massive Dirac fermion and a quark; or the pair production of scalar and vector leptoquarks each decaying to a neutrino and a top, bottom, or light-flavor quark. In most of the cases, the results obtained are the most stringent constraints to date.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks ($\tilde{g}\to q\bar{q}\tilde{\chi}_1^0$). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q\bar{q}\tilde{\chi}_1^0$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either a $\tilde{\chi}_2^0$ that decays to $Z\tilde{\chi}_1^0$ (1/3 of the time), or a $\tilde{\chi}_1^\pm$ that decays to $W^\pm\tilde{\chi}_1^0$ (2/3 of the time). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q_i\bar{q}_j V\tilde{\chi}_1^0$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and a $\tilde{\chi}_1^\pm$ that decays to $W^\pm\tilde{\chi}_1^0$. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q_i\bar{q}_j W\pm\tilde{\chi}_1^0$.