Date

Measurement of $\psi(2S)$ nuclear modification at backward and forward rapidity in $p$ $+$ $p$, $p$ $+$ Al, and $p$ $+$ Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.C 105 (2022) 064912, 2022.
Inspire Record 2029951 DOI 10.17182/hepdata.130200

Suppression of the $J/\psi$ nuclear-modification factor has been seen as a trademark signature of final-state effects in large collision systems for decades. In small systems, the nuclear modification was attributed to cold-nuclear-matter effects until the observation of strong differential suppression of the $\psi(2S)$ state in $p/d$ $+$ $A$ collisions suggested the presence of final-state effects. Results of $J/\psi$ and $\psi(2S)$ measurements in the dimuon decay channel are presented here for $p$ $+$ $p$, $p$ $+$Al, and $p$ $+$Au collision systems at $\sqrt{s_{_{NN}}}=200$ GeV. The results are predominantly shown in the form of the nuclear-modification factor, $R_{pA}$, the ratio of the $\psi(2S)$ invariant yield per nucleon-nucleon collision in collisions of proton on target nucleus to that in $p$ $+$ $p$ collisions. Measurements of the $J/\psi$ and $\psi(2S)$ nuclear-modification factor are compared with shadowing and transport-model predictions, as well as to complementary measurements at Large-Hadron-Collider energies.

12 data tables match query

PSI(2S)-->MU+MU- invariant yields in p+p, p+Al, and p+Au collisions as a function of rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/PSI(1S)-->MU+MU- invariant yields in p+p, p+Al, and p+Au collisions as a function of rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

PSI(2S)-->MU+MU- nuclear modification in p+Al collisions as a function of rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Nonprompt direct-photon production in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U.A. ; Adare, A. ; et al.
Phys.Rev.C 109 (2024) 044912, 2024.
Inspire Record 2061074 DOI 10.17182/hepdata.129292

The measurement of the direct-photon spectrum from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV is presented by the PHENIX collaboration using the external-photon-conversion technique for 0%--93% central collisions in a transverse-momentum ($p_T$) range of 0.8--10 GeV/$c$. An excess of direct photons, above prompt-photon production from hard-scattering processes, is observed for $p_T<6$ GeV/$c$. Nonprompt direct photons are measured by subtracting the prompt component, which is estimated as $N_{\rm coll}$-scaled direct photons from $p$ $+$ $p$ collisions at 200 GeV, from the direct-photon spectrum. Results are obtained for $0.8<p_T<6.0$ GeV/$c$ and suggest that the spectrum has an increasing inverse slope from ${\approx}0.2$ to 0.4 GeV/$c$ with increasing $p_T$, which indicates a possible sensitivity of the measurement to photons from earlier stages of the evolution of the collision. In addition, like the direct-photon production, the $p_T$-integrated nonprompt direct-photon yields also follow a power-law scaling behavior as a function of collision-system size. The exponent, $\alpha$, for the nonprompt component is found to be consistent with 1.1 with no apparent $p_T$ dependence.

0 data tables match query

$J/\psi$ and $\psi(2S)$ production at forward rapidity in $p$+$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 101 (2020) 052006, 2020.
Inspire Record 1773662 DOI 10.17182/hepdata.140524

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/\psi$ and cross-section ratio of $\psi(2S)$ to $J/\psi$ at forward rapidity in \pp collisions at \sqrts = 510 GeV via the dimuon decay channel. Comparison is made to inclusive $J/\psi$ cross sections measured at \sqrts = 200 GeV and 2.76--13 TeV. The result is also compared to leading-order nonrelativistic QCD calculations coupled to a color-glass-condensate description of the low-$x$ gluons in the proton at low transverse momentum ($p_T$) and to next-to-leading order nonrelativistic QCD calculations for the rest of the $p_T$ range. These calculations overestimate the data at low $p_T$. While consistent with the data within uncertainties above $\approx3$ GeV/$c$, the calculations are systematically below the data. The total cross section times the branching ratio is BR $d\sigma^{J/\psi}_{pp}/dy (1.2<|y|<2.2, 0<p_T<10~\mbox{GeV/$c$}) =$ 54.3 $\pm$ 0.5 (stat) $\pm$ 5.5 (syst) nb.

0 data tables match query

Systematic study of nuclear effects in $p$ $+$Al, $p$ $+$Au, $d$ $+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV using $\pi^0$ production

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 105 (2022) 064902, 2022.
Inspire Record 1965617 DOI 10.17182/hepdata.115023

The PHENIX collaboration presents a systematic study of $\pi^0$ production from $p$ $+$ $p$, $p$ $+$Al, $p$ $+$Au, $d$ $+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Measurements were performed with different centrality selections as well as the total inelastic, 0%--100%, selection for all collision systems. For 0%--100% collisions, the nuclear modification factors, $R_{xA}$, are consistent with unity for $p_T$ above 8 GeV/$c$, but exhibit an enhancement in peripheral collisions and a suppression in central collisions. The enhancement and suppression characteristics are similar for all systems for the same centrality class. It is shown that for high-$p_T$-$\pi^0$ production, the nucleons in the $d$ and $^3$He interact mostly independently with the Au nucleus and that the counter intuitive centrality dependence is likely due to a physical correlation between multiplicity and the presence of a hard scattering process. These observations disfavor models where parton energy loss has a significant contribution to nuclear modifications in small systems. Nuclear modifications at lower $p_T$ resemble the Cronin effect -- an increase followed by a peak in central or inelastic collisions and a plateau in peripheral collisions. The peak height has a characteristic ordering by system size as $p$ $+$Au $>$ $d$ $+$Au $>$ $^{3}$He$+$Au $>$ $p$ $+$Al. For collisions with Au ions, current calculations based on initial state cold nuclear matter effects result in the opposite order, suggesting the presence of other contributions to nuclear modifications, in particular at lower $p_T$.

0 data tables match query

Kinematic dependence of azimuthal anisotropies in $p$ $+$ Au, $d$ $+$ Au, $^3$He $+$ Au at $\sqrt{s_{_{NN}}}$ = 200 GeV 

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 105 (2022) 024901, 2022.
Inspire Record 2026169 DOI 10.17182/hepdata.132366

There is strong evidence for the formation of small droplets of quark-gluon plasma in $p/d/^{3}$He+Au collisions at the Relativistic Heavy Ion Collider (RHIC) and in $p$+$p$/Pb collisions at the Large Hadron Collider. In particular, the analysis of data at RHIC for different geometries obtained by varying the projectile size and shape has proven insightful. In the present analysis, we find excellent agreement with the previously published PHENIX at RHIC results on elliptical and triangular flow with an independent analysis via the two-particle correlation method, which has quite different systematic uncertainties and an independent code base. In addition, the results are extended to other detector combinations with different kinematic (pseudorapidity) coverage. These results provide additional constraints on contributions from nonflow and longitudinal decorrelations.

1 data table match query

$v_2$ vs $p_T$, p+Au at 200 GeV, 0-5% central, BBCS-FVTXS-CNT detector combination


Probing gluon spin-momentum correlations in transversely polarized protons through midrapidity isolated direct photons in $p^\uparrow+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.Lett. 127 (2021) 162001, 2021.
Inspire Record 1848987 DOI 10.17182/hepdata.131760

Studying spin-momentum correlations in hadronic collisions offers a glimpse into a three-dimensional picture of proton structure. The transverse single-spin asymmetry for midrapidity isolated direct photons in $p^\uparrow+p$ collisions at $\sqrt{s}=200$ GeV is measured with the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). Because direct photons in particular are produced from the hard scattering and do not interact via the strong force, this measurement is a clean probe of initial-state spin-momentum correlations inside the proton and is in particular sensitive to gluon interference effects within the proton. This is the first time direct photons have been used as a probe of spin-momentum correlations at RHIC. The uncertainties on the results are a fifty-fold improvement with respect to those of the one prior measurement for the same observable, from the Fermilab E704 experiment. These results constrain gluon spin-momentum correlations in transversely polarized protons.

0 data tables match query

Measurement of $J/\psi$ at forward and backward rapidity in $p+p$, $p+A$l, $p+A$u, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200~{\rm GeV}$

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 102 (2020) 014902, 2020.
Inspire Record 1762446 DOI 10.17182/hepdata.98626

Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.

1 data table match query

J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.


Fragmentation of Neon-22 Relativistic Nuclei on Photoemulsion Nuclei

The Alma Ata-Bucharest-Leningrad-Dubna-Dushanbe-Yerevan- Kosice-Cracow-Leningrad-Moscow-Tashkent-Tbilisi-Ulan Bator-Zernograd collaboration Andreeva, N.P. ; Anzon, Z.V. ; Bubnov, V.I. ; et al.
Sov.J.Nucl.Phys. 47 (1988) 102-108, 1988.
Inspire Record 239909 DOI 10.17182/hepdata.38972

None

0 data tables match query

NUCLEUS IS NUCLEAR PHOTOEMULSION. EVENT WITH A TOTAL CHARGE OF ALL SPECTATOR FRAGMENTS OF A PROJECTILE = 0.

NUCLEUS IS NUCLEAR PHOTOEMULSION. EVENT WITH A TOTAL CHARGET OF ALL SPECTATOR FRAGMENTS OF A PROJECTILE = 1.

NUCLEUS IS NUCLEAR PHOTOEMULSION. EVENT WITH A TOTAL CHARGET OF ALL SPECTATOR FRAGMENTS OF A PROJECTILE = 0.

More…

No description provided.

No description provided.

No description provided.

More…