Resonances formed by anti-p p and decaying into pi0 pi0 eta for masses 1960-MeV to 2410-MeV.

Anisovich, A.V. ; Baker, C.A. ; Batty, C.J. ; et al.
Nucl.Phys.A 651 (1999) 253-276, 1999.
Inspire Record 504411 DOI 10.17182/hepdata.36177

Data on pbar-b annihilation in flight into pizero-pizero-eta are presented for nine beam momenta 600 to 1940 MeV/c. The strongest four intermediate states are found to be f_2(1270)-eta, a_2(1320)-pi, sigma-eta and a_0(980)-pi. Partial wave analysis is performed mainly to look for resonances formed by pbar-p and decaying into pizero-pizero-eta through these intermediate states. There is evidence for the following s-channel I = 0 resonances : two 4^{++} resonances with mass and width (M,Gamma) at (2044, 208) MeV and (2320+-30, 220+-30) MeV/ three 2^{++} resonances at (2020+-50, 200+-70) MeV, (2240+-40, 170+-50) MeV and (2370+-50, 320+-50) MeV/ two 3^{++} resonances at (2000+-40, 250+-40) MeV and (2280+-30, 210+-30) MeV/ a 1^{++} resonance at (2340+-40, 340+-40) MeV/ and two 2^{-+} resonances at (2040+-40, 190+-40) MeV and (2300+-40, 270+-40) MeV.

1 data table

No description provided.


Multiplicity and Correlations of Secondary Protons in Hadron Nucleus Interactions at High-energies

Azimov, S.A. ; Igamberdiev, K.R. ; Inogamov, Sh.V. ; et al.
Yad.Fiz. 33 (1981) 1562-1567, 1981.
Inspire Record 170277 DOI 10.17182/hepdata.17862

None

14 data tables

No description provided.

No description provided.

No description provided.

More…

A kinematically complete measurement of the proton structure function F2 in the resonance region and evaluation of its moments.

The CLAS collaboration Osipenko, M. ; Ricco, G. ; Taiuti, M. ; et al.
Phys.Rev.D 67 (2003) 092001, 2003.
Inspire Record 612145 DOI 10.17182/hepdata.12253

We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.

46 data tables

No description provided.

No description provided.

No description provided.

More…

Charge-dependent pair correlations relative to a third particle in $p$+Au and $d$+Au collisions at RHIC

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Lett.B 798 (2019) 134975, 2019.
Inspire Record 1738942 DOI 10.17182/hepdata.105911

Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions -- the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in $p$+Au and $d$+Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data.

10 data tables

The $\gamma_{OS}$ correlators in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.

The $\gamma_{SS}$ correlators in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.

The $\gamma_{OS}$ correlators in d+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.

More…

Observation of Global Spin Alignment of $\phi$ and $K^{*0}$ Vector Mesons in Nuclear Collisions

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Nature 614 (2023) 244-248, 2023.
Inspire Record 2063245 DOI 10.17182/hepdata.129067

Notwithstanding decades of progress since Yukawa first developed a description of the force between nucleons in terms of meson exchange, a full understanding of the strong interaction remains a major challenge in modern science. One remaining difficulty arises from the non-perturbative nature of the strong force, which leads to the phenomenon of quark confinement at distances on the order of the size of the proton. Here we show that in relativistic heavy-ion collisions, where quarks and gluons are set free over an extended volume, two species of produced vector (spin-1) mesons, namely $\phi$ and $K^{*0}$, emerge with a surprising pattern of global spin alignment. In particular, the global spin alignment for $\phi$ is unexpectedly large, while that for $K^{*0}$ is consistent with zero. The observed spin-alignment pattern and magnitude for the $\phi$ cannot be explained by conventional mechanisms, while a model with a connection to strong force fields, i.e. an effective proxy description within the Standard Model and Quantum Chromodynamics, accommodates the current data. This connection, if fully established, will open a potential new avenue for studying the behaviour of strong force fields.

38 data tables

Global spin alignment of $\phi$ and $K^{*0}$ vector mesons in heavy-ion collisions. The measured matrix element $\rho_{00}$ as a function of beam energy for the $\phi$ and $K^{*0}$ vector mesons within the indicated windows of centrality, transverse momentum ($p_T$) and rapidity ($y$). The open symbols indicate ALICE results for Pb+Pb collisions at 2.76 TeV at $p_{T}$ values of 2.0 and 1.4 GeV/c for the $\phi$ and $K^{*0}$ mesons, respectively, corresponding to the $p_{T}$ bin nearest to the mean $p_{T}$ for the 1.0 – 5.0 GeV/$c$ range assumed for each meson in the present analysis. The red solid curve is a fit to data in the range of $\sqrt{s_{NN}} = 19.6$ to 200 GeV, based on a theoretical calculation with a $\phi$-meson field. Parameter sensitivity of $\rho_{00}$ to the $\phi$-meson field is shown in Ref.5. The red dashed line is an extension of the solid curve with the fitted parameter $G_s^{(y)}$. The black dashed line represents $\rho_{00}=1/3.$

Global spin alignment of $\phi$ and $K^{*0}$ vector mesons in heavy-ion collisions. The measured matrix element $\rho_{00}$ as a function of beam energy for the $\phi$ and $K^{*0}$ vector mesons within the indicated windows of centrality, transverse momentum ($p_T$) and rapidity ($y$). The open symbols indicate ALICE results for Pb+Pb collisions at 2.76 TeV at $p_{T}$ values of 2.0 and 1.4 GeV/c for the $\phi$ and $K^{*0}$ mesons, respectively, corresponding to the $p_{T}$ bin nearest to the mean $p_{T}$ for the 1.0 – 5.0 GeV/$c$ range assumed for each meson in the present analysis. The red solid curve is a fit to data in the range of $\sqrt{s_{NN}} = 19.6$ to 200 GeV, based on a theoretical calculation with a $\phi$-meson field. Parameter sensitivity of $\rho_{00}$ to the $\phi$-meson field is shown in Ref.5. The red dashed line is an extension of the solid curve with the fitted parameter $G_s^{(y)}$. The black dashed line represents $\rho_{00}=1/3.$

Example of combinatorial background subtracted invariant mass distributions and the extracted yields as a function of $\cos \theta^*$ for $\phi$ and $K^{*0}$ mesons. \textbf{a)} example of $\phi \rightarrow K^+ + K^-$ invariant mass distributions, with combinatorial background subtracted, integrated over $\cos \theta^*$; \textbf{b)} example of $K^{*0} (\overline{K^{*0}}) \rightarrow K^{-} \pi^{+} (K^{+} \pi^{-})$ invariant mass distributions, with combinatorial background subtracted, integrated over $\cos \theta^*$; \textbf{c)} extracted yields of $\phi$ as a function of $\cos \theta^*$; \textbf{d)} extracted yields of $K^{*0}$ as a function of $\cos \theta^*$.

More…

Measurement of elliptic flow of light nuclei at $\sqrt{s_{NN}}$ = 200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 034908, 2016.
Inspire Record 1416992 DOI 10.17182/hepdata.104505

We present measurements of 2$^{nd}$ order azimuthal anisotropy ($v_{2}$) at mid-rapidity $(|y|<1.0)$ for light nuclei d, t, $^{3}$He (for $\sqrt{s_{NN}}$ = 200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV) and anti-nuclei $\bar{\rm d}$ ($\sqrt{s_{NN}}$ = 200, 62.4, 39, 27, and 19.6 GeV) and $^{3}\bar{\rm He}$ ($\sqrt{s_{NN}}$ = 200 GeV) in the STAR (Solenoidal Tracker at RHIC) experiment. The $v_{2}$ for these light nuclei produced in heavy-ion collisions is compared with those for p and $\bar{\rm p}$. We observe mass ordering in nuclei $v_{2}(p_{T})$ at low transverse momenta ($p_{T}<2.0$ GeV/$c$). We also find a centrality dependence of $v_{2}$ for d and $\bar{\rm d}$. The magnitude of $v_{2}$ for t and $^{3}$He agree within statistical errors. Light-nuclei $v_{2}$ are compared with predictions from a blast wave model. Atomic mass number ($A$) scaling of light-nuclei $v_{2}(p_{T})$ seems to hold for $p_{T}/A < 1.5$ GeV/$c$. Results on light-nuclei $v_{2}$ from a transport-plus-coalescence model are consistent with the experimental measurements.

19 data tables

Mid-rapidity v2(pT) for d,anti-d,t,He,anti-He from minimum bias (0-80%) Au+Au collisions 200 GeV (d data points are also shown in Fig 5).

Mid-rapidity v2(pT) for d,anti-d,t,He from minimum bias (0-80%) Au+Au collisions 62.4 GeV.

Mid-rapidity v2(pT) for d,anti-d,t,He from minimum bias (0-80%) Au+Au collisions 39 GeV.

More…

Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and $\phi$ meson in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 062301, 2016.
Inspire Record 1383879 DOI 10.17182/hepdata.71571

We present high precision measurements of elliptic flow near midrapidity ($|y|<1.0$) for multi-strange hadrons and $\phi$ meson as a function of centrality and transverse momentum in Au+Au collisions at center of mass energy $\sqrt{s_{NN}}=$ 200 GeV. We observe that the transverse momentum dependence of $\phi$ and $\Omega$ $v_{2}$ is similar to that of $\pi$ and $p$, respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0-30$\%$ and 30-80$\%$ collision centrality. There is an indication of the breakdown of previously observed mass ordering between $\phi$ and proton $v_{2}$ at low transverse momentum in the 0-30$\%$ centrality range, possibly indicating late hadronic interactions affecting the proton $v_{2}$.

23 data tables

No description provided.

No description provided.

No description provided.

More…

Collision Energy Dependence of Moments of Net-Kaon Multiplicity Distributions at RHIC

The STAR collaboration Adamczyk, L. ; Adams, J.R. ; Adkins, J.K. ; et al.
Phys.Lett.B 785 (2018) 551-560, 2018.
Inspire Record 1621460 DOI 10.17182/hepdata.98573

Fluctuations of conserved quantities such as baryon number, charge, and strangeness are sensitive to the correlation length of the hot and dense matter created in relativistic heavy-ion collisions and can be used to search for the QCD critical point. We report the first measurements of the moments of net-kaon multiplicity distributions in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV. The collision centrality and energy dependence of the mean ($M$), variance ($\sigma^2$), skewness ($S$), and kurtosis ($\kappa$) for net-kaon multiplicity distributions as well as the ratio $\sigma^2/M$ and the products $S\sigma$ and $\kappa\sigma^2$ are presented. Comparisons are made with Poisson and negative binomial baseline calculations as well as with UrQMD, a transport model (UrQMD) that does not include effects from the QCD critical point. Within current uncertainties, the net-kaon cumulant ratios appear to be monotonic as a function of collision energy.

43 data tables

Raw $\Delta N_k$ distributions in Au+Au collisions at 7.7 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.

Raw $\Delta N_k$ distributions in Au+Au collisions at 11.5 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.

Raw $\Delta N_k$ distributions in Au+Au collisions at 14.5 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.

More…

Jet-like Correlations with Direct-Photon and Neutral-Pion Triggers at $\sqrt{s_{_{NN}}} = 200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 760 (2016) 689-696, 2016.
Inspire Record 1442357 DOI 10.17182/hepdata.89881

Azimuthal correlations of charged hadrons with direct-photon ($\gamma_{dir}$) and neutral-pion ($\pi^{0}$) trigger particles are analyzed in central Au+Au and minimum-bias $p+p$ collisions at $\sqrt{s_{_{NN}}} = 200$ GeV in the STAR experiment. The charged-hadron per-trigger yields at mid-rapidity from central Au+Au collisions are compared with $p+p$ collisions to quantify the suppression in Au+Au collisions. The suppression of the away-side associated-particle yields per $\gamma_{dir}$ trigger is independent of the transverse momentum of the trigger particle ($p_{T}^{\mathrm{trig}}$), whereas the suppression is smaller at low transverse momentum of the associated charged hadrons ($p_{T}^{\mathrm{assoc}}$). Within uncertainty, similar levels of suppression are observed for $\gamma_{dir}$ and $\pi^{0}$ triggers as a function of $z_{T}$ ($\equiv p_T^{\mathrm{assoc}}/p_T^{\mathrm{trig}}$). The results are compared with energy-loss-inspired theoretical model predictions. Our studies support previous conclusions that the lost energy reappears predominantly at low transverse momentum, regardless of the trigger energy.

21 data tables

The Azimuthal correlation functions of charged hadrons per trigger

The Azimuthal correlation functions of charged hadrons per trigger

The Azimuthal correlation functions of charged hadrons per trigger

More…

Direct virtual photon production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 770 (2017) 451-458, 2017.
Inspire Record 1474129 DOI 10.17182/hepdata.77495

We report the direct virtual photon invariant yields in the transverse momentum ranges $1\!<\!p_{T}\!<\!3$ GeV/$c$ and $5\!<\!p_T\!<\!10$ GeV/$c$ at mid-rapidity derived from the dielectron invariant mass continuum region $0.10<M_{ee}<0.28$ GeV/$c^{2}$ for 0-80\% minimum-bias Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV. A clear excess in the invariant yield compared to the number-of-binary-collisions ($N_{bin}$) scaled $p+p$ reference is observed in the $p_T$ range $1\!<\!p_{T}\!<\!3$ GeV/$c$. For $p_T\!>6$ GeV/$c$ the production follows $N_{bin}$ scaling. Model calculations with contributions from thermal radiation and initial hard parton scattering are consistent within uncertainties with the direct virtual photon invariant yield.

22 data tables

Dielectron invariant mass spectra in 1.0-1.5 GeV/c.

Dielectron invariant mass spectra in 1.5-2.0 GeV/c.

Dielectron invariant mass spectra in 2.0-2.5 GeV/c.

More…