The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0
Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.
We present an angular analysis of the $B^{+}\rightarrow K^{\ast+}(\rightarrow K_{S}^{0}\pi^{+})\mu^{+}\mu^{-}$ decay using 9$\,\mbox{fb}^{-1}$ of $pp$ collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from Standard Model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner $B^{0}\rightarrow K^{\ast0}\mu^{+}\mu^{-}$ decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.
The CP-averaged observable Fl versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The CP-averaged observable S3 versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The CP-averaged observable S4 versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The Standard Model of particle physics currently provides our best description of fundamental particles and their interactions. The theory predicts that the different charged leptons, the electron, muon and tau, have identical electroweak interaction strengths. Previous measurements have shown a wide range of particle decays are consistent with this principle of lepton universality. This article presents evidence for the breaking of lepton universality in beauty-quark decays, with a significance of 3.1 standard deviations, based on proton-proton collision data collected with the LHCb detector at CERN's Large Hadron Collider. The measurements are of processes in which a beauty meson transforms into a strange meson with the emission of either an electron and a positron, or a muon and an antimuon. If confirmed by future measurements, this violation of lepton universality would imply physics beyond the Standard Model, such as a new fundamental interaction between quarks and leptons.
Likelihood function from the fit to the nonresonant $B^+$ --> $K^+\ell^+ \ell^−$ candidates profiled as a function of $R_K$.
This article presents differential measurements of the asymmetry between $\Lambda_b^0$ and $\overline{\Lambda}_b^0$ baryon production rates in proton-proton collisions at centre-of-mass energies of $\sqrt{s}=7$ and $8\,\textrm{TeV}$ collected with the LHCb experiment, corresponding to an integrated luminosity of $3\,\textrm{fb}^{-1}$. The $\Lambda_b^0$ baryons are reconstructed through the inclusive semileptonic decay $\Lambda_b^0\rightarrow\Lambda_c^+\mu^-\overline{\nu}_{\mu}X$. The production asymmetry is measured both in intervals of rapidity in the range $2.15
$\Lambda_{b}^{0}$ production asymmetry in bins of $\Lambda_{b}^{0}$ rapidity for proton-proton collisions at $\sqrt{s} = 7$ TeV. The first uncertainty is statistical and the second represents the systematic uncertainty. The results in neighbouring intervals are correlated.
$\Lambda_{b}^{0}$ production asymmetry in bins of $\Lambda_{b}^{0}$ rapidity for proton-proton collisions at $\sqrt{s} = 8$ TeV. The first uncertainty is statistical and the second represents the systematic uncertainty. The results in neighbouring intervals are correlated.
$\Lambda_{b}^{0}$ production asymmetry in bins of $\Lambda_{b}^{0}$ $p_T$ for proton-proton collisions at $\sqrt{s} = 7$ TeV. The first uncertainty is statistical and the second represents the systematic uncertainty. The results in neighbouring intervals are correlated.
An exotic narrow state in the $D^0D^0\pi^+$ mass spectrum just below the $D^{*+}D^0$ mass threshold is studied using a data set corresponding to an integrated luminosity of 9 fb$^{-1}$ acquired with the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV. The state is consistent with the ground isoscalar $T^+_{cc}$ tetraquark with a quark content of $cc\bar{u}\bar{d}$ and spin-parity quantum numbers $\mathrm{J}^{\mathrm{P}}=1^+$. Study of the $DD$ mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell $D^{*+}$ mesons is confirmed by the $D^0\pi^+$ mass distribution. The mass of the resonance and its coupling to the $D^{*}D$ system are analysed. Resonance parameters including the pole position, scattering length, effective range and compositeness are measured to reveal important information about the nature of the $T^+_{cc}$ state. In addition, an unexpected dependence of the production rate on track multiplicity is observed.
Distribution of $D^0 D^0 \pi^+$ mass where the contribution of the non-$D^0$ background has been statistically subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.
Mass distribution for $D^0 \pi^+$ pairs from selected $D^0 D^0 \pi^+$ candidates with a mass below the $D^{*+}D^0$ mass threshold with non-$D^0$ background subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.
$D^0 D^0$~mass distributions for selected candidates with the $D^0$ background subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.
Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. The observation of a new type of hadronic state, a doubly charmed tetraquark containing two charm quarks, an anti-$u$ and an anti-$d$ quark, is reported using data collected by the LHCb experiment at the Large Hadron Collider. This exotic state with a mass of about 3875 MeV$/c^2$ manifests itself as a narrow peak in the mass spectrum of $D^0D^0\pi^+$ mesons just below the $D^{*+}D^0$ mass threshold. The near threshold mass together with a strikingly narrow width reveals the resonance nature of the state.
Distribution of $D^0 D^0 \pi^+$ mass where the contribution of the non-$D^0$ background has been statistically subtracted. Uncertainties on the data points are statistical only and represent one standard deviation, calculated as a sum in quadrature of the assigned weights from the background-subtraction procedure.
Distribution of $D^0 D^0 \pi^+$ mass where the contribution of the non-$D^0$ background has been statistically subtracted by assigning the a weight to every candidate.
A test of lepton universality, performed by measuring the ratio of the branching fractions of the $B^{0} \rightarrow K^{*0}\mu^{+}\mu^{-}$ and $B^{0} \rightarrow K^{*0}e^{+}e^{-}$ decays, $R_{K^{*0}}$, is presented. The $K^{*0}$ meson is reconstructed in the final state $K^{+}\pi^{-}$, which is required to have an invariant mass within 100$\mathrm{\,MeV}c^2$ of the known $K^{*}(892)^{0}$ mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of about 3$\mathrm{\,fb}^{-1}$, collected by the LHCb experiment at centre-of-mass energies of 7 and 8$\mathrm{\,TeV}$. The ratio is measured in two regions of the dilepton invariant mass squared, $q^{2}$, to be \begin{eqnarray*} R_{K^{*0}} = \begin{cases} 0.66~^{+~0.11}_{-~0.07}\mathrm{\,(stat)} \pm 0.03\mathrm{\,(syst)} & \textrm{for } 0.045 < q^{2} < 1.1~\mathrm{\,GeV^2}c^4 \, , \\ 0.69~^{+~0.11}_{-~0.07}\mathrm{\,(stat)} \pm 0.05\mathrm{\,(syst)} & \textrm{for } 1.1\phantom{00} < q^{2} < 6.0~\mathrm{\,GeV^2}c^4 \, . \end{cases} \end{eqnarray*} The corresponding 95.4\% confidence level intervals are $[0.52, 0.89]$ and $[0.53, 0.94]$. The results, which represent the most precise measurements of $R_{K^{*0}}$ to date, are compatible with the Standard Model expectations at the level of 2.1--2.3 and 2.4--2.5 standard deviations in the two $q^{2}$ regions, respectively.
Distributions of the $R(K^{*0})$ delta log-likelihood, $-(\ln L - \ln L_{best})$, for the three trigger categories combined in the low-q2 bin ($0.045 < q^2 < 1.1$ GeV$^{2}/c^4$).
Distributions of the $R(K^{*0})$ delta log-likelihood, $-(\ln L - \ln L_{best})$, for the three trigger categories combined in the central-q2 bin ($1.1 < q^2 < 6.0$ GeV$^{2}/c^4$).
A measurement of the differential branching fraction of the decay ${B^{0}\rightarrow K^{\ast}(892)^{0}\mu^{+}\mu^{-}}$ is presented together with a determination of the S-wave fraction of the $K^+\pi^-$ system in the decay $B^{0}\rightarrow K^{+}\pi^{-}\mu^{+}\mu^{-}$. The analysis is based on $pp$-collision data corresponding to an integrated luminosity of 3\,fb$^{-1}$ collected with the LHCb experiment. The measurements are made in bins of the invariant mass squared of the dimuon system, $q^2$. Precise theoretical predictions for the differential branching fraction of $B^{0}\rightarrow K^{\ast}(892)^{0}\mu^{+}\mu^{-}$ decays are available for the $q^2$ region $1.1
Differential branching fraction of $B^0 \to K^*(892)^0 \mu^+ \mu^-$ decays in bins of $q^2$. The first uncertainty is statistical, the second systematic and the third due to the uncertainty on the $B^0 \to J/\psi K^{*0}$ and $J/\psi \to \mu^+ \mu^-$ branching fractions.
Differences in the behaviour of matter and antimatter have been observed in $K$ and $B$ meson decays, but not yet in any baryon decay. Such differences are associated with the non-invariance of fundamental interactions under the combined charge-conjugation and parity transformations, known as $C\!P$ violation. Using data from the LHCb experiment at the Large Hadron Collider, a search is made for $C\!P$-violating asymmetries in the decay angle distributions of $\Lambda^0_b$ baryons decaying to $p\pi^-\pi^+\pi^-$ and $p\pi^-K^+K^-$ final states. These four-body hadronic decays are a promising place to search for sources of $C\!P$ violation both within and beyond the Standard Model of particle physics. We find evidence for $C\!P$ violation in $\Lambda^0_b$ to $p\pi^-\pi^+\pi^-$ decays with a statistical significance corresponding to 3.3 standard deviations including systematic uncertainties. This represents the first evidence for $C\!P$ violation in the baryon sector.
For $\Lambda_b^0\to p\pi^-\pi^+\pi^-$ decays, the CP- and P-violating observables, $a^{\hat{T}-odd}_{CP}$ and $a^{\hat{T}-odd}_{P}$, resulting from the fit to the data are listed with their statistical and systematic uncertainties. Each value is obtained through an independent fit to a region of the phase space defined in Scheme A.
For $\Lambda_b^0\to p\pi^-\pi^+\pi^-$ decays, the CP- and P-violating observables, $a^{\hat{T}-odd}_{CP}$ and $a^{\hat{T}-odd}_{P}$, resulting from the fit to the data are listed with their statistical and systematic uncertainties. Each value is obtained through an independent fit to a region of the phase space defined in Scheme B (i.e. $|\Phi|$ domain is split in $\pi/10$ equal intervals)).
Fig2a. The invariant mass distributions for $\Lambda^0_b\to p\pi^-\pi^+\pi^-$ decays. Uncertainties on the data points are statistical only and represent one standard deviations, calculated assuming Poisson-distributed entries.
Measurements of the cross-section for producing \bquark quarks in the reaction $pp\to b\bar{b} X$ are reported in 7 and 13 TeV collisions at the LHC as a function of the pseudorapidity $\eta$ in the range $2<\eta<5$ covered by the acceptance of the LHCb experiment. The measurements are done using semileptonic decays of $b$-flavored hadrons decaying into a ground-state charmed hadron in association with a muon. The cross-sections in the covered $\eta$ range are $72.0\pm 0.3\pm6.8~\mu$b and $144\pm 1\pm 21~\mu$b for 7 and 13 TeV. The ratio is $2.00\pm0.02\pm0.26$, where the quoted uncertainties are statistical and systematic, respectively. The agreement with theoretical expectation is good at 7 TeV, but differs somewhat at 13 TeV. The measured ratio of cross-sections is larger at lower $\eta$ than the model prediction.
The cross-section as a function of $\eta$ for $pp \to H_b X$, where $H_b$ is a hadron that contains either a $b$ or a $\bar{b}$ quark, but not both, at center-of-mass energy of 7 TeV. The first uncertainty is statistical and the second systematic. To get the differential cross-section in each interval multiply by a factor two.
The cross-section as a function of $\eta$ for $pp \to H_b X$, where $H_b$ is a hadron that contains either a $b$ or a $\bar{b}$ quark, but not both, at center-of-mass energy of 13 TeV. The first uncertainty is statistical and the second systematic. To get the differential cross-section in each interval multiply by a factor two.
The ration of the cross-sections as a function of $\eta$ for $pp \to H_b X$, where $H_b$ is a hadron that contains either a $b$ or a $\bar{b}$ quark, but not both, for center-of-mass energies of 13 and 7 TeV. The first uncertainty is statistical and the second systematic.