Results on the transverse spherocity dependence of light-flavor particle production ($\pi$, K, p, $\phi$, ${\rm K^{*0}}$, ${\rm K}^{0}_{\rm{S}}$, $\Lambda$, $\Xi$) at midrapidity in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV were obtained with the ALICE apparatus. The transverse spherocity estimator ($S_{{\rm O}}^{{\it p}_{\rm T}=1}$) categorizes events by their azimuthal topology. Utilizing narrow selections on $S_{\text{O}}^{{\it p}_{\rm T}=1}$, it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The $S_{{\rm O}}^{{\it p}_{\rm T}=1}$ estimator is found to effectively constrain the hardness of the events when the midrapidity ($\left | \eta \right |< 0.8$) estimator is used. The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced. The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of $S_{{\rm O}}^{{\it p}_{\rm T}=1}$.
The production yields of the $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$ resonances are measured in pp collisions at $\sqrt{s}=13$ TeV with ALICE. The measurements are performed as a function of the charged-particle multiplicity $\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle$, which is related to the energy density produced in the collision. The results include transverse momentum ($p_{\rm T}$) distributions, $p_{\rm T}$-integrated yields, mean transverse momenta of $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$, as well as ratios of the $p_{\rm T}$-integrated resonance yields relative to yields of other hadron species. The $\Sigma(1385)^{\pm}/\pi^{\pm}$ and $\Xi(1530)^{0}/\pi^{\pm}$ yield ratios are consistent with the trend of the enhancement of strangeness production from low to high multiplicity pp collisions, which was previously observed for strange and multi-strange baryons. The yield ratio between the measured resonances and the long-lived baryons with the same strangeness content exhibits a hint of a mild increasing trend at low multiplicity, despite too large uncertainties to exclude the flat behaviour. The results are compared with predictions from models such as EPOS-LHC and PYTHIA 8 with Rope shoving. The latter provides the best description of the multiplicity dependence of the $\Sigma(1385)^{\pm}$ and $\Xi(1530)^{0}$ production in pp collisions at $\sqrt{s}=13$ TeV.
The elliptic flow ($v_2$) of $\rm D^0$ mesons from beauty-hadron decays (non-prompt $\rm D^0$) was measured in midcentral (30-50%) Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ALICE detector at the LHC. The $\rm D^0$ mesons were reconstructed at midrapidity ($|y|<0.8$) from their hadronic decay $\mathrm{D^0 \to K^-\pi^+}$, in the transverse momentum interval $2 < p_{\rm T} < 12$ GeV/$c$. The result indicates a positive $v_2$ for non-prompt $\rm D^0$ mesons with a significance of 2.7$\sigma$. The non-prompt $\rm D^0$-meson $v_2$ is lower than that of prompt non-strange D mesons with 3.2$\sigma$ significance in $2 < p_{\rm T} < 8$ GeV/$c$, and compatible with the $v_2$ of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.
Measurements of charged-particle production in pp, p$-$Pb, and Pb$-$Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum ($p_{\mathrm{T}}^{\rm trig}$) in the range $8<p_{\mathrm{T}}^{\rm trig}<15$ GeV$/c$. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, $R_{\mathrm{T}}=N_{\mathrm{ch}}^{\mathrm{T}}/\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle$, is used to group events according to their UE activity, where $N_{\mathrm{ch}}^{\mathrm{T}}$ is the charged-particle multiplicity per event in the transverse region and $\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle$ is the mean value over the whole analysed sample. The energy dependence of the $R_{\mathrm{T}}$ distributions in pp collisions at $\sqrt{s}=2.76$, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle $p_{\rm T}$ spectra as a function of $R_{\mathrm{T}}$ in the three azimuthal regions in pp, p$-$Pb, and Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p$-$Pb).
The production cross sections of ${\rm D^0}$ and $\Lambda^+_{\rm c}$ hadrons originating from beauty-hadron decays (i.e. non-prompt) were measured for the first time at midrapidity ($|y|<0.5$) by the ALICE Collaboration in proton-proton collisions at a center-of-mass energy $\sqrt{s}=13$ TeV. They are described within uncertainties by perturbative QCD calculations employing the fragmentation fractions of beauty quarks to baryons measured at forward rapidity by the LHCb Collaboration. The ${\rm b\overline{b}}$ production cross section per unit of rapidity at midrapidity, estimated from these measurements, is ${\rm d}\sigma_{\rm b\overline{b}}/{\rm d}y|_{|y|<0.5} = 83.1 \pm 3.5 (\mathrm{stat.}) \pm 5.4(\mathrm{syst.}) ^{+12.3}_{-3.2} (\mathrm{extrap.})\,\mu$b. The baryon-to-meson ratios are computed to investigate the hadronization mechanism of beauty quarks. The non-prompt $\Lambda^+_{\rm c}/{\rm D^0}$ production ratio has a similar trend to the one measured for the promptly produced charmed particles and to the p$/\pi^+$ and $\Lambda/{\rm K^0_S}$ ratios, suggesting a similar baryon-formation mechanism among light, strange, charm, and beauty hadrons. The $p_{\rm T}$-integrated non-prompt $\Lambda_{\rm c}/{\rm D^0}$ ratio is found to be significantly higher than the one measured in e$^+$e$^-$ collisions.
The ALICE Collaboration reports a search for jet quenching effects in high-multiplicity (HM) proton$-$proton collisions at $\sqrt{s}$ = 13 TeV, using the semi-inclusive azimuthal-difference distribution $\Delta\varphi$ of charged-particle jets recoiling from a high transverse momentum (high-$p_{\mathrm{T,trig}}$) trigger hadron. Jet quenching may broaden the $\Delta\varphi$ distribution measured in HM events compared to that in minimum bias (MB) events. The measurement employs a $p_{\mathrm{T,trig}}$-differential observable for data-driven suppression of the contribution of multiple partonic interactions, which is the dominant background. While azimuthal broadening is indeed observed in HM compared to MB events, similar broadening for HM events is observed for simulations based on the PYTHIA 8 Monte Carlo generator, which does not incorporate jet quenching. Detailed analysis of these data and simulations show that the azimuthal broadening is due to bias of the HM selection towards events with multiple jets in the final state. The identification of this bias has implications for all jet quenching searches where selection is made on the event activity.
Measurements of the production cross sections of prompt ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{\ast +}}$, ${\rm D_s^+}$, ${\rm \Lambda_{c}^{+}}$, and ${\rm \Xi_{c}^{+}}$ charm hadrons at midrapidity in proton$-$proton collisions at $\sqrt{s}=13$ TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum ($p_{\rm T}$) are provided with improved precision and granularity. The ratios of $p_{\rm T}$-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-$x$ ($10^{-5}-10^{-4}$). The measurements of ${\rm \Lambda_{c}^{+}}$ (${\rm \Xi_{c}^{+}}$) baryon production extend the measured $p_{\rm T}$ intervals down to $p_{\rm T}=0(3)$~GeV$/c$. These measurements are used to determine the charm-quark fragmentation fractions and the ${\rm c\overline{c}}$ production cross section at midrapidity ($|y|<0.5$) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons ${\rm D^0}$, ${\rm D^+}$, ${\rm D_s^+}$, ${\rm \Lambda_{c}^{+}}$, ${\rm \Xi_{c}^{0}}$ and, for the first time, ${\rm \Xi_{c}^{+}}$, and of the strongly-decaying J/$psi$ mesons. The first measurements of ${\rm \Xi_{c}^{+}}$ and ${\rm \Sigma_{c}^{0,++}}$ fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e$^+$e$^-$ and ep collisions. The ${\rm c\overline{c}}$ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations.
This article presents the first measurement of the interaction between charm hadrons and nucleons. The two-particle momentum correlations of $\mathrm{pD^-}$ and $\mathrm{\overline{p}D}^+$ pairs are measured by the ALICE Collaboration in high-multiplicity pp collisions at $\sqrt{s} = 13~\mathrm{TeV}$. The data are compatible with the Coulomb-only interaction hypothesis within (1.1-1.5)$\sigma$. The level of agreement slightly improves if an attractive nucleon(N)$\overline{\mathrm{D}}$ strong interaction is considered, in contrast to most model predictions which suggest an overall repulsive interaction. This measurement allows for the first time an estimation of the 68% confidence level interval for the isospin $\mathrm{I}=0$ inverse scattering length of the $\mathrm{N\overline{D}}$ state ${f_{0,~\mathrm{I}=0}^{-1} \in [-0.4,0.9]~\mathrm{fm^{-1}}}$, assuming negligible interaction for the isospin $\mathrm{I}=1$ channel.
The production of non-prompt ${\rm D}^{0}$ mesons from beauty-hadron decays was measured at midrapidity ($\left| y \right| < 0.5$) in Pb-Pb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_{\rm NN}}=5.02~\mathrm{TeV}$ with the ALICE experiment at the LHC. Their nuclear modification factor ($R_{\rm AA}$), measured for the first time down to $p_{\rm T}=1~\mathrm{GeV}/c$ in the $0-10$% and $30-50$% centrality classes, indicates a significant suppression, up to a factor of about three, for $p_{\rm T} > 5~\mathrm{GeV}/c$ in the $0-10$% central Pb-Pb collisions. The data are described by models that include both collisional and radiative processes in the calculation of beauty-quark energy loss in the quark-gluon plasma, and quark recombination in addition to fragmentation as a hadronisation mechanism. The ratio of the non-prompt to prompt ${\rm D}^{0}$-meson $R_{\rm AA}$ is larger than unity for $p_{\rm T} > 4~\mathrm{GeV}/c$ in the $0-10$% central Pb-Pb collisions, as predicted by models in which beauty quarks lose less energy than charm quarks in the quark-gluon plasma because of their larger mass.
The production of prompt $D^{0}$, $D^{+}_{\rm s}$, and $\Lambda_{\rm c}^{+}$ hadrons, and their ratios, $D^{+}_{\rm s}$/$D^{0}$ and $\Lambda_{\rm c}^{+}$/$D^{0}$, are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV at midrapidity ($|y| <0.5$) with the ALICE detector at the LHC. The measurements are performed as a function of the charm-hadron transverse momentum ($p_{\rm T}$) in intervals of charged-particle multiplicity, measured with two multiplicity estimators covering different pseudorapidity regions. While the strange to non-strange $D^{+}_{\rm s}$/$D^{0}$ ratio indicates no significant multiplicity dependence, the baryon-to-meson $p_{\rm T}$-differential $\Lambda_{\rm c}^{+}$/$D^{0}$ ratio shows a multiplicity-dependent enhancement, with a significance of 5.3$\sigma$ for $1< p_{\rm T} < 12$ GeV/$c$, comparing the highest multiplicity interval with respect to the lowest one. The measurements are compared with a theoretical model that explains the multiplicity dependence by a canonical treatment of quantum charges in the statistical hadronisation approach, and with predictions from event generators that implement colour reconnection mechanisms beyond the leading colour approximation to model the hadronisation process. The $\Lambda_{\rm c}^{+}$/$D^{0}$ ratios as a function of $p_{\rm T}$ present a similar shape and magnitude as the $\Lambda/K^{0}_{s}$ ratios in comparable multiplicity intervals, suggesting a potential common mechanism for light- and charm-hadron formation, with analogous multiplicity dependence. The $p_{\rm T}$-integrated ratios, extrapolated down to $p_{\rm T}$=0, do not show a significant dependence on multiplicity within the uncertainties.