Measurement of anti-p p single diffraction dissociation at s**(1/2) = 546-GeV and 1800-GeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
Phys.Rev.D 50 (1994) 5535-5549, 1994.
Inspire Record 359393 DOI 10.17182/hepdata.42542

We report a measurement of the diffraction dissociation differential cross section d2σSD/dM2dt for p¯p→p¯X at √s =546 and 1800 GeV, M2/s<0.2 and 0≤-t≤0.4 GeV2. Our results are compared to theoretical predictions and to extrapolations from experimental results at lower energies.

1 data table match query

Single diffraction dissociation cross section.


Double diffraction dissociation at the Fermilab Tevatron collider

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 87 (2001) 141802, 2001.
Inspire Record 557212 DOI 10.17182/hepdata.42921

We present results from a measurement of double diffraction dissociation in $\bar pp$ collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width $\Delta\eta^0>3$ (overlapping $\eta=0$) is found to be $4.43\pm 0.02{(stat)}{\pm 1.18}{(syst) mb}$ [$3.42\pm 0.01{(stat)}{\pm 1.09}{(syst) mb}$] at $\sqrt{s}=1800$ [630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization.

1 data table match query

Cross sections for double diffractive production.


Diffraction Dissociation at the {CERN} Pulsed Collider at {CM} Energies of 900-{GeV} and 200-{GeV}

The UA5 collaboration Ansorge, R.E. ; Åsman, B. ; Booth, C.N. ; et al.
Z.Phys.C 33 (1986) 175, 1986.
Inspire Record 232615 DOI 10.17182/hepdata.15812

Cross-sections for diffractive particle production and pseudorapidity distributions of the decay products of diffractive states are presented. The data were obtained with the UA 5 streamer chamber detector at the CERNpp Collider operated in a new pulsed mode yieldingpp interactions at c.m. energies of 900 and 200 GeV. Data recorded with a special trigger designed to select a sample of events enriched in single-diffractive interactions clearly favour apt-limited fragmentation of diffractive states. The cross-section for single-diffractive particle production ϊ was found to be 7.8±0.5±1.1 mb at 900 GeV and 4.8±0.5±0.8 mb at 200 GeV (first error statistical, second systematic). From the pseudorapidity distribution of diffractive states we deduce the average number of charged particles to be 6.5±1.0 at 900 GeV and 4.1±1.1 at 200 GeV. Furthermore we report on our estimates for the cross-section of double-diffractive particle production at both Collider energies.

1 data table match query

Single diffractive cross sections.


Tests of QCD factorisation in the diffractive production of dijets in deep-inelastic scattering and photoproduction at HERA

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 51 (2007) 549-568, 2007.
Inspire Record 746380 DOI 10.17182/hepdata.45555

Measurements are presented of differential dijet cross sections in diffractive photoproduction (Q^2&lt;0.01 GeV^2) and deep-inelastic scattering processes (DIS, 4&lt;Q^2&lt;80 GeV^2). The event topology is given by ep-> e X Y, in which the system X, containing at least two jets, is separated from a leading low-mass proton remnant system Y by a large rapidity gap. The dijet cross sections are compared with NLO QCD predictions based on diffractive parton densities previously obtained from a QCD analysis of inclusive diffractive DIS cross sections by H1. In DIS, the dijet data are well described, supporting the validity of QCD factorisation. The diffractive DIS dijet data are more sensitive to the diffractive gluon density at high fractional parton momentum than the measurements of inclusive diffractive DIS. In photoproduction, the predicted dijet cross section has to be multiplied by a factor of approximately 0.5 for both direct and resolved photon interactions to describe the measurements. The ratio of measured dijet cross section to NLO prediction in photoproduction is a factor 0.5+-0.1 smaller than the same ratio in DIS. This suppression is the first clear observation of QCD hard scattering factorisation breaking at HERA. The measurements are also compared to the two soft colour neutralisation models SCI and GAL. The SCI model describes diffractive dijet production in DIS but not in photoproduction. The GAL model fails in both kinematic regions.

15 data tables match query

Differential cross section for DIS events as a function of Z_Pomeron.

Differential cross section for DIS events as a function of LOG10(X_Pomeron).

Differential cross section for DIS events as a function of W.

More…

Kaon production in <math altimg="si1.gif"><ovl type="bar" style="s">p</ovl>p</math> reactions at a centre-of-mass energy of 540 GeV

The Bonn UA5 & Brussels UA5 & Cambridge UA5 & CERN UA5 & Stockholm UA5 collaborations Alner, G.J. ; Alpgard, K. ; Anderer, P. ; et al.
Nucl.Phys.B 258 (1985) 90624 505-539, 1985.
Inspire Record 214234 DOI 10.17182/hepdata.8127

Using the UA5 detector, the inclusive central production of Ks<sup loc="post">0</sup> and K<sup loc="post">±</sup> mesons has been measured in non-single-diffractive interactions at the CERN SPS <math altimg="si1.gif"><ovl type="bar" style="s">p</ovl>p</math> Collider at a c.m. energy of 540 GeV. The average transverse momentum is found to be 〈pT〉 = 0.57±0.03 GeV/c in the rapidity range |y|<2.5, which is an increase of about 30% over the top ISR energy. The K/π ratio has increased from about 8% at ISR energies to 9.5±0.9±0.7% (the last error is systematic) at 540 GeV. The average number of Ks<sup loc="post">0</sup> per non-single-diffractive event is 1.1±0.1 and the inclusive inelastic cross section is estimated at 49±5 mb.

1 data table match query

NON SINGLE DIFFRACTION CROSS SECTION.


Measurement and QCD analysis of the diffractive deep-inelastic scattering cross-section at HERA

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 48 (2006) 715-748, 2006.
Inspire Record 718190 DOI 10.17182/hepdata.45892

A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|&lt;1 {\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \leq Q^2 \leq 1600 \rm GeV^2$, triple differentially in $\xpom$, $Q^2$ and $\beta = x / \xpom$, where $x$ is the Bjorken scaling variable. At low $\xpom$, the data are consistent with a factorisable $\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\alphapom(0)= 1.118 \pm 0.008 {\rm (exp.)} ^{+0.029}_{-0.010} {\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\beta$ dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the $Q^2$ range studied. Total and differential cross sections are also measured for the diffractive charged current process $e^+ p \to \bar{\nu}_e XY$ and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current $ep$ cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on $Q^2$ at fixed $\xpom$ and $x$ or on $x$ at fixed $Q^2$ and $\beta$.

22 data tables match query

Reduced cross section from the Minimum Bias data sample taken in 1997.

Reduced cross section from the Minimum Bias data sample taken in 1997.

Reduced cross section from the complete ('all') data sample taken in 1997.

More…

Measurement of the diffractive cross-section in deep inelastic scattering

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 70 (1996) 391-412, 1996.
Inspire Record 415942 DOI 10.17182/hepdata.44849

Diffractive scattering of $\gamma~* p \to X + N$, where $N$ is either a proton or a nucleonic system with $M_N<4$GeV has been measured in deep inelastic scattering (DIS) at HERA. The cross section was determined by a novel method as a function of the $\gamma~* p$ c.m. energy $W$ between 60 and 245GeV and of the mass $M_X$ of the system $X$ up to 15GeV at average $Q~2$ values of 14 and 31GeV$~2$. The diffractive cross section $d\sigma~{diff} /dM_X$ is, within errors, found to rise linearly with $W$. Parameterizing the $W$ dependence by the form $d\sigma~{diff}/dM_X \propto (W~2)~{(2\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} -2)}$ the DIS data yield for the pomeron trajectory $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} = 1.23 \pm 0.02(stat) \pm 0.04 (syst)$ averaged over $t$ in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ extracted from soft interactions. The value of $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates from processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton $F~{D(3)}_2(\beta,Q~2, \mbox{$x_{_{I\hspace{-0.2em}P}}$})$ has been determined, where $\beta$ is the momentum fraction of the struck quark in the pomeron. The form $F~{D(3)}_2 = constant \cdot (1/ \mbox{$x_{_{I\hspace{-0.2em}P}}$})~a$ gives a good fit to the data in all $\beta$ and $Q~2$ intervals with $a = 1.46 \pm 0.04 (stat) \pm

3 data tables match query

No description provided.

No description provided.

No description provided.


Hadron production in diffractive deep-inelastic scattering.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Phys.Lett.B 428 (1998) 206-220, 1998.
Inspire Record 468748 DOI 10.17182/hepdata.44324

Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (x_F) variable for charged particles, the squared transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a function of x_F. These distributions are compared with results in the gamma^* p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q^2 by hard gluons.

6 data tables match query

Energy flow distributions in the gamma*-pomeron CM frame.. Positive etarap corresponds to the direction of the incoming photon.

Energy flow distributions in the gamma*-pomeron CM frame.. Positive etarap corresponds to the direction of the incoming photon.

Energy flow distributions in the gamma*-pomeron CM frame.. Positive etarap corresponds to the direction of the incoming photon.

More…

Measurement of the total photon-proton cross-section and its decomposition at 200-GeV center-of-mass energy

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Z.Phys.C 69 (1995) 27-38, 1995.
Inspire Record 399015 DOI 10.17182/hepdata.44969

We present a new measurement of the total photoproduction cross section performed with the H1 detector at HERA. For an average centre of mass energy of 200GeV a value of $\sigma_{tot}~{\gamma{p}}= 165\pm2\pm11\mu$b has been obtained. A detailed analysis of the data in adequate kinematic regions enabled a decomposition of the total cross section in its elastic, single diffractive dissociation and remaining non-diffractive parts, based on safe assumptions on the double diffractive dissociation contribution.

1 data table match query

No description provided.


Deep inelastic inclusive and diffractive scattering at $Q^2$ values from 25 to 320 GeV$^2$ with the ZEUS forward plug calorimeter

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 800 (2008) 1-76, 2008.
Inspire Record 779854 DOI 10.17182/hepdata.11639

Deep inelastic scattering and its diffractive component, $ep \to e^{\prime}\gamma^* p \to e^{\prime}XN$, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb$^{-1}$. The $M_X$ method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy $W$ (37 -- 245 GeV), photon virtuality $Q^2$ (20 -- 450 GeV$^2$) and mass $M_X$ (0.28 -- 35 GeV) is covered. The diffractive cross section for $2 < M_X < 15$ GeV rises strongly with $W$, the rise becoming steeper as $Q^2$ increases. The data are also presented in terms of the diffractive structure function, $F^{\rm D(3)}_2$, of the proton. For fixed $Q^2$ and fixed $M_X$, $\xpom F^{\rm D(3)}_2$ shows a strong rise as $\xpom \to 0$, where $\xpom$ is the fraction of the proton momentum carried by the Pomeron. For Bjorken-$x < 1 \cdot 10^{-3}$, $\xpom F^{\rm D(3)}_2$ shows positive $\log Q^2$ scaling violations, while for $x \ge 5 \cdot 10^{-3}$ negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.

208 data tables match query

Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 25 GeV**2.

Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 35 GeV**2.

Cross section for diffractive scattering GAMMA* P --> DD X where M(DD) < 2.3 GeV and M(X) = 1.2 GeV for Q**2 = 45 GeV**2.

More…