The B<sup loc="post">0</sup> - B̄<sup loc="post">0</sup> average mixing parameter <math altimg="si1.gif"><rm><ovl type="bar" style="s">χ</ovl></rm></math> and b forward-backward asymmetry AFB<sup loc="post">0</sup>(b) are measured from a sample of about 4 200 000 Z → qq̄ events recorded with the ALEPH detector at LEP in the years 1990–1995. High transverse momentum electrons and muons produced in b semileptonic decays provide the tag of the quark flavour and of its charge. The average mixing parameter and the pole b asymmetry are measured to be <math altimg="si1.gif"><rm><ovl type="bar" style="s">χ</ovl></rm></math> = 0.1246 ± 0.0051stat ± 0.0052syst, AFB<sup loc="post">0</sup>(b) = 0.1008 ± 0.0043stat ± 0.0028syst. The value of sin<sup loc="post">2</sup>θw<sup loc="post">eff</sup> = 0.23198 ± 0.00092 is extracted from the asymmetry measurement.
ASYM(N=FB,C=OBSERVED) is observed asymmetry including BQ, CQ and backround.
No description provided.
We investigate antinuclei production in Pb + Pb interactions at 158 GeV/ c per nucleon at zero degree production angle. We quote invariant differential production cross sections for antiprotons and antideuterons. The corresponding antideuteron to antiproton ratio at midrapidity is 4.2 · 10 −4 . One antihelium-3 nucleus was observed. The results are discussed in the framework of a simple coalescence model.
No description provided.
No description provided.
No description provided.
An analysis of theA-dependence of the target-diffractive cross-section is presented. Data on thet-dependence of the cross section are fitted in the usual exponential form. The mean multiplicity of negative particles produced diffractively is found not to be sensitive to the nuclear mass. TheA-dependence of the emitted proton multiplicity and the angular distributions of the produced charged particles suggest re-scattering of the emitted particles on other nucleons of the nucleus. All these facts are compared with results obtained by Monte-Carlo simulation according to a two-component Dual Parton Model.
For target-diffractive cross-section.
For target-diffractive cross-section.
Multiplicities for the diffractive system.
The forward-backward asymmetry in e + e − → b b at s = 57.9 GeV and the b-quark branching ratio to muons have been measured using neural networks. Unlike previous methods for measuring the b b forward-backward asymmetry where the estimated background from c -quark decays and other sources are subtracted, here events are categorized as either b b or non- b b events by neural networks based on event-by-event characteristics. The determined asymmetry is −0.429 ± 0.044 (stat) ± 0.047 (sys) and is consistent with the prediction of the standard model. The measured B B mixing parameter is 0.136 ± 0.037 (stat) ± 0.040 (sys) ± 0.002 (model) and the measured b-quark branching ratio to muons is 0.122 ± 0.006 (stat) ± 0.007 (sys).
.
At the electron-proton collider HERA the inclusive $D~{*\pm}$ meson photoproduction cross section has been measured with the H1 detector in two different, but partly overlapping, kinematical regions. For the first, where $\langle W_{\gamma p}\rangle \approx 200$\ GeV and $Q~2 < 0.01\,\gev~2$, the result is $\sigma(\gamma p \rightarrow c \bar{c} X) = (13.2 \pm 2.2 ~{+2.1}_{-1.7}\, ~{+9.9}_{-4.8})\,\mu b$. The second measurement for $Q~2 < 4\,\gev~2$ yields $\sigma(\gamma p \rightarrow c \bar{c} X) = ( 9.3 \pm 2.1 ~{+1.9}_{-1.8}\, ~{+6.9}_ {-3.2} )\,\mu b$ at $\langle W_{\gamma p}\rangle \approx 142$\,GeV and $\sigma(\gamma p \rightarrow c \bar{c} X) = ( 20.6 \pm 5.5 ~ {+4.3}_{-3.9}\, ~{+15.4}_{-7.2})\,\mu b$ at $\langle W_{\gamma p} \rangle \approx 230$\,GeV, respectively. The third error accounts for an additional uncertainty due to the proton and photon parton density parametrizations. Differential cross sections are presented as a function of the $D~{*\pm}$ transverse momentum and rapidity. The results compare reasonably well with next-to-leading order QCD calculations. Evidence for diffractive photoproduction of charm quark is presented.
Tagged events.
Untagged events.
Second systematical errors are due to the dependence on the parton density parametrizations. Tagged events.
The production of $\phi$ mesons in the reaction $e~{+}p \rightarrow e~{+} \phi p$ ($\phi \rightarrow K~{+}K~{-}$), for $7 < Q~2 < 25$ GeV$~2$ and for virtual photon-proton centre of mass energies ($W$) in the range 42-134 GeV, has been studied with the ZEUS detector at HERA. When compared to lower energy data at similar $Q~2$, the results show that the $\gamma~*p \rightarrow \phid p$ cross section rises strongly with $W$. This behaviour is similar to that previously found for the $\gamma~*p \rightarrow \rho~0 p$ cross section. This strong dependence cannot be explained by production through soft pomeron exchange. It is, however, consistent with perturbative QCD expectations, where it reflects the rise of the gluon momentum density in the proton at small $x$. The ratio of $\sigma (\phi) / \sigma (\rho~0)$, which has previously been determined by ZEUS to be 0.065 $\pm$ 0.013 (stat.) in photoproduction at a mean $W$ of 70 GeV, is measured to be 0.18 $\pm $ 0.05 (stat.) $\pm$ 0.03 (syst.) at a mean $Q~2$ of 12.3 GeV$~2$ and mean $W$ of $\approx$ 100 GeV and is thus approaching at large $Q~2$ the value of 2/9 predicted from the quark charges of the vector mesons and a flavour independent production mechanism.
No description provided.
Additional 32 PCT Systematic error.
Additional 32 PCT Systematic error.
A search for the neutral Higgs boson in the processes e + e − → Z → H 0 γ → q q γ and e + e − → Z → Z ∗ H 0 → q q γγ has been performed using 2.8 million hadronic Z decays collected with the L3 detector at LEP from 1991 through 1994. No evidence for these processes has been observed. Upper limits at 95% confidence level for the corresponding cross sections have been set and the results have been compared with theoretical predictions beyond the Standard Model.
The magnitude of the cross section is multiplied on the branching ratio.
None
No description provided.
No description provided.
A measurement of the cross section for production of single, isolated photons is reported for transverse energies in the range of 10-125 GeV, for two regions of pseudorapidity, |\eta|<0.9 and 1.6<|\eta|<2.5. The data represent 12.9 pb-1 of integrated luminosity accumulated in p-pbar collisions at sqrt{s} = 1.8 TeV and recorded with the D0 detector at the Fermilab Tevatron Collider.
Numerical values supplied by J. Womersley.
Numerical values supplied by J. Womersley.
This study reports the first measurement of the azimuthal decorrelation between jets with pseudorapidity separation up to five units. The data were accumulated using the D\O\ detector during the 1992--1993 collider run of the Fermilab Tevatron at $\sqrt{s}=$ 1.8 TeV. These results are compared to next--to--leading order (NLO) QCD predictions and to two leading--log approximations (LLA) where the leading--log terms are resummed to all orders in $\alpha_{\scriptscriptstyle S}$. The final state jets as predicted by NLO QCD show less azimuthal decorrelation than the data. The parton showering LLA Monte Carlo {\small HERWIG} describes the data well; an analytical LLA prediction based on BFKL resummation shows more decorrelation than the data.
Distribution of the pseudorapidity interval of the two jets at the extremes of pseudorapidity. Data are read from the graph and the errors are statistical only.
Normalized distributions of the azimuthal angle difference of the two jets at the extremes of pseudorapidity in 3 pseudorapididity difference intervals. Data are read from the graph and the errors are statistical only.
The correlation between the PHI and ETARAP difference distributions as used in the analysis.Data are read from the graph and the errors include the statiucal and un-correlated systematic errors added in quadrature.