New experimental results are presented on proton-proton elastic scattering in the range of momentum transfer 4 GeV 2 < − t < 10 GeV 2 at the centre-of-mass energy of √ s = 53 GeV. The data have been obtained using the Split-Field Magnet detector at the CERN Intersecting Storage Rings. We observe another change of slope of the differential cross section near − t =6.5 GeV 2 .
NUMERICAL VALUES SUPPLIED BY K. WINTER.
We measured the cross section for proton-proton elastic scattering at 11.75 GeV/c using the Zero Gradient Synchrotron 52% polarized proton beam and a 60% polarized proton target. We measured dσdt(ij) in the ↑↑, ↓↓, and ↑↓ initial spin states perpendicular to the scattering plane in the range P⊥2=2.0−3.6 (GeV/c)2. We found that the asymmetry parameter A decreases smoothly with increasing P⊥2 in this range, and that the spin-spin correlation parameter Cnn may have a minimum near P⊥2=3 (GeV/c)2.
No description provided.
The polarization parameter in proton-proton elastic scattering has been measured at an incident momentum of 7.9 GeV/ c and four-momentum transfers in the range 0.9 < | t | < 6.5 (GeV/ c ) 2 using a high intensity unpolarized proton beam incident on a polarized proton target. The angle and momentum of the forward scattered protons were measured with a magnet spectrometer and scintillation counter hodoscopes and the angle of the recoil proton was measured using similar hodoscopes. A clean separation between the elastic scattering from free hydrogen and that coming from inelastic interactions and from interactions with complex nuclei in the target was obtained. The polarization shows substantial structure rising from zero at | t | = 1.0 (GeV/ c ) 2 to a maximum at | t | = 1.7 (GeV/ c ) 2 and then falling to zero at | t | = 2.0 (GeV/ c ) 2 . There is evidence of a further peak at | t | = 2.8 (GeV/ c ) 2 . Above | t | = 3.25 (GeV/ c ) 2 the polarization is small and consistent with zero. A comparison of these data with data obtained at other beam momenta shows that the polarization parameter has a strong momentum dependence.
No description provided.
None
POLARIZATION PARAMETER P(N000).
POLARIZATION PARAMETER A(00N0).
WOLFENSTEIN PARAMETER D(N0N0).
A measurement of the polarization parameter P 0 in pp elastic scattering has been made at 24 GeV/ c over the range | t | = 0.1 to 0.9 (GeV/ c ) 2 , positive, falling to zero around | t | = 0.8 (GeV/ c ) 2 . For the range 0.1 ⪕ |t| ⪕ 0.4 GeV /c) 2 , P 0 is constant at about 0.03.
Axis error includes +- 5/5 contribution (SYS-ERR DUE MAINLY TO UNCERTAINTY IN KNOWLEDGE OF ABSOLUTE VALUE OF TARGET POLARIZATION).
Using the polarized-beam facility at Argonne National Laboratory and a polarized proton target, simultaneous measurements of the spin parameter P and the spin correlation term CNN were made. Data were obtained and analyzed at beam momenta of 2, 3, 4, and 6 GeV/c in the momentum-transfer-squared interval 0.1≤|t|≤2.8 (GeV/c)2. A preliminary phase-shift analysis of the 2- and 3-GeV/c data is discussed and a comparison with predictions of a particular Regge-pole model at all four energies is made.
No description provided.
No description provided.
No description provided.
We have measured the polarization parameter for proton-proton elastic scattering at p0 = 6 GeV/c for |t|<0.5 (GeV/c)2 using the polarized proton beam at the Argonne Zero Gradient Synchrotron. These data, together with all previous measurements in this t region, are well fitted by the empirical relation P = (0.481±0.010)(−t)12exp(2.291±0.085)t.
No description provided.
The real part of the proton proton elastic scattering amplitude has been determined from its interference with the Coulomb amplitude at total centre-of-mass energies up to 62 GeV. The observed steady increase of ϱ with energy indicates that the total proton proton cross section continues to increase well beyond this energy.
No description provided.
USING SIG AND SLOPE OBTAINED FROM INTERPOLATIONS OF PREVIOUS MEASUREMENTS.
We have made the first measurement of the spin-spin correlation parameter CSS in pp elastic scattering at 6 GeV/c over the |t| range from 0.05 to 1.5 (GeV/c)2. The measured CSS data points are all negative, and their absolute values increase with |t|. The results are compared with some existing attempts to describe the pp scattering process.
NUMERICAL VALUES OBTAINED FROM AUTHORS. MAGNETIC FIELD ALIGNMENT AND APERTURE EFFECTS MEAN THAT QUANTITY ACTUALLY MEASURED IS 0.98 CSS + 0.02 CNN - 0.12 CSL. SEE LATER NUMBERS IN THE RECORD OF I. P. AUER ET AL., PL 70B, 475 (1977).
The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.
No description provided.
No description provided.
No description provided.