A comparison of K±p and p±p elastic scattering is made for incident energy 50 to 175 GeV. Average values of 0.19±0.04 and 0.11±0.02 GeV2 were found for the invariant-momentum-transfer values of the Kp and pp crossover points, respectively.
KP AND PP CROSSOVER POINTS AT -T = 0.19 +- 0.04 AND 0.11 +- 0.02 GEV**2 (AVERAGE VALUES) RESPECTIVELY.
New experimental results are presented on proton-proton elastic scattering in the range of momentum transfer 0.8GeV 2 < − t < 9 GeV 2 at a centre-of-mass energy of √ s = 53 GeV. The data are obtained sing the Split-Field- Magnet Detector at the CERN Intersecting Storage Rings. The cross section has well-known minimum at − t = (1.34±0.02) GeV 2 but no further minimum or change of slope is observed between 2 and 6.5 GeV 2 .
Axis error includes +- 0.0/0.0 contribution (?////THE QUOTED ERRORS ARE THE QUADRATIC SUM OF STATISTICAL AND ESTIMATED SYSTEMATIC ERRORS. THE SYSTEMATIC ERRORS ARE NOT INDEPENDENT FROM BIN TO BIN).
The ratio of π+p to pp elastic scattering is found to be smoothly varying over the range −t=0.03 to 0.4 GeV2. It is well fitted by a single exponential, indicating the forward behavior must be quite similar for the two reactions.
ACTUALLY THE DATA ARE THE EXPONENTIAL SLOPE OF THE RATIO OF D(SIG)/DT FOR THE TWO REACTIONS.
The elastic cross section for proton proton scattering at 11.75 GeV/ c was measured at the Argonne ZGS using a 50% polarized target. In the range p ⊥ 2 =0.6 → 2.2 (GeV/ c ) 2 we obtained precise measurements of d σ d t(ij) for the ⇈ ⇊, and ⇅ initial spin states perpendicular to the scattering plane. We confirmed that the asymmetry parameter, A , decreases with energy in the diffraction peak, but is approximately energy-independent at large p ⊥ 2 . We found that the spin correlation parameter c nn acquires rather dramatic structure, and at large p ⊥ 2 seems to grow with energy.
No description provided.
We have measured the spin-spin correlation parameter CNN at 2, 3, 4, and 6 GeV/c over the |t| range of 0.1 to 2.0 (GeV/c)2 and have observed a striking energy and |t| dependence in CNN. Polarization data were simultaneously collected and are compared to previous results.
CNN PARAMETER MEASURED.
Differential cross sections have been measured at Fermilab with a focusing spectrometer for π±p, K±p, and p±p elastic scattering at 50-, 70-, 100-, 140-, and 175-GeV/c incident momentum over the |t| range 0.03 to 0.8 GeV2. The results are smooth in t and are parametrized by quadratic exponential fits.
DATA PRESENTED AGAIN IN LATER PAPER.
New experimental results are presented on proton-proton elastic scattering at centre-of-mass energies s =23 GeV and s =62 GeV . The data are obtained using the Split Field Magnet detector at the CERN Intersecting Storage Rings. The absolute differential cross-sections show an energy-dependent behaviour. The position of the diffraction minimum changes from t =(−1.44±0.02)GeV 2 at 23 GeV to (−1.26±0.03)GeV 2 at 62 GeV. The cross-section at the second maximum is increasing with s . The connection of these observations with the hypothesis of “geometrical scaling” is discussed.
63 K EVENTS.
380 K EVENTS.
Differential cross sections for p−p elastic scattering are presented with scattering angles in the center-of-mass system greater than 35° to 50°. The data were obtained at incident laboratory momenta 0.857, 1.091, 1.210, 1.374, 1.405, and 1.501 GeV/c. This spans the region of the onset of Δ(1236) production and where a possible spin-singlet D-wave resonance is indicated in an analysis of earlier data.
No description provided.
As part of a program to determine proton-proton elastic-scattering amplitudes, we have measured the spin-spin correlation parameter CNN at 6 GeV/c. Measurements were made over the |t| range of 0.08 to 1.4 (GeV/c)2 using a polarized beam and a polarized target at the Argonne National Laboratory Zero Gradient Synchrotron.
No description provided.
We present here the results of an experiment to study the polarization in p−p elastic scattering at the incident momenta 5.15, 7.00, and 12.33 Ge V/c, at t values ranging between - 0.5 and - 6.5 (GeV/c)2. At each momentum we observe a relative maximum in the polarization around t=−1.8 (GeV/c)2. At 12.33 GeV/c the data exhibit a double zero near t=−2.4 (GeV/c)2 and another relative maximum near t=−2.9 (GeV/c)2. The results are discussed in terms of the Chu-Hendry optical model.
No description provided.
No description provided.
No description provided.