The production of the Lambda and Sigma0 hyperons has been measured via the pp->pK+Lambda / Sigma0 reaction at the internal COSY-11 facility in the excess energy range between 14 and 60 MeV. The transition of the Lambda/Sigma0 cross section ratio from about 28 at Q<=13 MeV to the high energy level of about 2.5 is covered by the data showing a strong decrease of the ratio between 10 and 20 MeV excess energy. Effects from the final state interactions in the p-Sigma0 channel seem to be much smaller compared to the p-Lambda one. Estimates of the effective range parameters are given for the N-Lambda and the N-Sigma systems.
Cross section for LAMBDA production.. Statistical errors only.
Cross section for SIGMA0 production.. Statistical errors only.
Energy dependence of the LAMBDA/SIGMA0 ratio.
Using the CLEO detector at the Cornell Electron-positron Storage Ring, we have measured the scaled momentum spectra, dsigma/dx_p, and the inclusive production cross sections of the charm mesons D+, D0, D*+, and D*0 in e+e- annihilation at about 10.5 GeV center of mass energy, excluding the decay products of B mesons. The statistical accuracy and momentum resolution are superior to previous measurements at this energy.
Total cross sections for D production from the various decay modes. The data are fully corrected for detection efficiency and decay branching ratios. The second DSYS error is the error due to the uncertainty in the branching ratio.
Differential cross sections for D+ production from the (K- PI+ PI+) decay mode.
Differential cross sections for D0 production from the (K- PI+) decay mode.
We have measured the polarization of $\Lambda$ hyperons produced inclusively by a $\Sigma^-$ beam of 340 GeV/c momentum in nuclear targets. From a sample of 9.5 millions of identified $\Lambda$ decays, polarizations were determined in the range $x_F \gt 0.1$ and $p_t\leq 1.6$ GeV/c . The polarization w.r.t. the production normal is mainly positive for $x_F \geq 0.3$. At fixed values of $x_F$, it increases with $p_t$ to a maximum between $p_t = 0.5$ and $p_t = 1$ GeV/c , and then decreases to zero or even negative values, in sharp contrast to the plateau above $p_t = 1$ GeV/c observed in inclusive $\Lambda$ production by protons.
Measured values of the LAMBDA polarization as a function of PT in the XL range 0.1 to 0.2.
Measured values of the LAMBDA polarization as a function of PT in the XL range 0.2 to 0.3.
Measured values of the LAMBDA polarization as a function of PT in the XL range 0.3 to 0.4.
The reactions e^+e^- -> e^+e^- Lambda X and e^+e^- -> e^+e^- Lambda X are studied using data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 209 GeV. Inclusive differential cross sections are measured as a function of the lambda transverse momentum, p_t, and pseudo-rapidity, eta, in the ranges 0.4 GeV < p_t < 2.5 GeV and |\eta| < 1.2. The data are compared to Monte Carlo predictions. The differential cross section as a function of p_t is well described by an exponential of the form A exp (- p_t /
The differential cross section for LAMBDA production as a function of PT.
The differential cross section for LAMBDA production as a function of pseudorapidity in two PT regions.
We present improved measurements of the differential production rates of stable charged particles in hadronic Z0 decays, and of charged pions, kaons and protons identified over a wide momentum range using the SLD Cherenkov Ring Imaging Detector. In addition to flavor-inclusive Z0 decays, measurements are made for Z0 decays into light (u, d, s), c and b primary flavors, selected using the upgraded Vertex Detector. Large differences between the flavors are observed that are qualitatively consistent with expectations based upon previously measured production and decay properties of heavy hadrons. These results are used to test the predictions of QCD in the Modified Leading Logarithm Approximation, with the ansatz of Local Parton-Hadron Duality, and the predictions of three models of the hadronization process. The light-flavor results provide improved tests of these predictions, as they do not include the contribution of heavy-hadron production and decay; the heavy-flavor results provide complementary model tests. In addition we have compared hadron and antihadron production in light quark (as opposed to antiquark) jets. Differences are observed at high momentum for all three charged hadron species, providing direct probes of leading particle effects, and stringent constraints on models.
Production rates of all stable charged particles. The statistical and systematic errors are shown separately for the momentum distribution. They are combined in quadrature for the other two distributions. The first DSYS error is due tothe uncertainty in the track finding efficiency and the second DSYS error is th e rest of the systematic error.
The charged pion fraction and differential production rate per hadronic Z0 decay.
The charged kaon fraction and differential production rate per hadronic Z0 decay.
K^+K^- production in two-photon collisions has been studied using a large data sample of 67 fb^{-1} accumulated with the Belle detector at the KEKB asymmetric e^+e^- collider. We have measured the cross section for the process gamma gamma -> K^+ K^- for center-of-mass energies between 1.4 and 2.4 GeV, and found three new resonant structures in the energy region between 1.6 and 2.4 GeV. The angular differential cross sections have also been measured.
Cross section for two photon production of K+ K- in the polar angular region ABS(COS(THETA*)) < 0.6.
Differential cross sections DSIG/DCOS(THETA) for the W range 1.40 to 1.56 GeV.. Statistical errors only.
Differential cross sections DSIG/DCOS(THETA) for the W range 1.56 to 1.72 GeV.. Statistical errors only.
The reactions gamma p --> K+ Lambda and gamma p --> K+ Sigma0 were measured in the energy range from threshold up to a photon energy of 2.6 GeV. The data were taken with the SAPHIR detector at the electron stretcher facility, ELSA. Results on cross sections and hyperon polarizations are presented as a function of kaon production angle and photon energy. The total cross section for Lambda production rises steeply with energy close to threshold, whereas the Sigma0 cross section rises slowly to a maximum at about E_gamma = 1.45 GeV. Cross sections together with their angular decompositions into Legendre polynomials suggest contributions from resonance production for both reactions. In general, the induced polarization of Lambda has negative values in the kaon forward direction and positive values in the backward direction. The magnitude varies with energy. The polarization of Sigma0 follows a similar angular and energy dependence as that of Lambda, but with opposite sign.
Differential cross sections for the reaction GAMMA P --> K+ LAMBDA in the energy region 0.9 to 1.0 GeV.
Differential cross sections for the reaction GAMMA P --> K+ LAMBDA in the energy region 1.0 to 1.2 GeV.
Differential cross sections for the reaction GAMMA P --> K+ LAMBDA in the energy region 1.2 to 1.4 GeV.
We report on measurements of differential cross sections d sigma/d p_t for prompt charm meson production in p anti-p collisions at s**(1/2) = 1.96 TeV using 5.8 +/- 0.3 pb-1 of data from the CDF II detector at the Fermilab Tevatron. The data are collected with a new trigger that is sensitive to the long lifetime of hadrons containing heavy flavor. The charm meson cross sections are measured in the central rapidity region |y| \leq 1 in four fully reconstructed decay modes: D0 --> K- pi+, D*+ -> D0 pi+, D+ --> K- pi+ pi+, D+_s--> phi pi+, and their charge conjugates. The measured cross sections are compared to theoretical calculations.
Measured prompt charm production cross sections for ABS(YRAP) < 1. The branching ratios used are (D0:3.81 +- 0.09 PCT), (D+:2.57 +- 0.06 PCT),(D+:9.1 +- 0.6 PCT) and (D/S+:1.8 +- 0.5 PCT).
Exclusive production of π and K meson pairs in two photon collisions is measured with ALEPH data collected between 1992 and 2000. Cross-sections are presented as a function of cos θ ∗ and invariant mass, for | cos θ ∗ |<0.6 and invariant masses between 2.0 and 6.0 GeV/ c 2 (2.25 and 4.0 GeV/ c 2 ) for pions (kaons). The shape of the distributions are found to be well described by QCD predictions but the data have a significantly higher normalization.
Measured angular distribution for pion production.
Measured angular distribution for kaon production.
Measured cross section for pion production as a function of W.
The reaction pp->d K+ Kbar0 has been investigated at an excess energy of Q=46 MeV above the (K+ Kbar0) threshold with ANKE at COSY-Juelich. From the detected coincident dK+ pairs about 1000 events with a missing Kbar0 were identified, corresponding to a total cross section of sigma(pp->d K+ Kbar0)=(38 +/- 2(stat) +/- 14(syst)) nb. Invariant-mass and angular distributions have been jointly analyzed and reveal s-wave dominance between the two kaons, accompanied by a p-wave between the deuteron and the kaon system. This is interpreted in terms of a0+(980)-resonance production.
Total cross section for P P --> DEUT K+ KBAR0.
Centre of mass angular distribution of the deuteron with respect to the direction of the incoming proton.
Centre of mass angular distribution of the vector joining the K+ and KBAR0 with respect to the direction of the incoming proton.