Date

Version 3
Search for resonant pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 105 (2022) 092002, 2022.
Inspire Record 2032611 DOI 10.17182/hepdata.111124

A search for resonant Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is presented. The analysis uses 126-139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}$ = 13 TeV collected with the ATLAS detector at the Large Hadron Collider. The analysis is divided into two channels, targeting Higgs boson decays which are reconstructed as pairs of small-radius jets or as individual large-radius jets. Spin-0 and spin-2 benchmark signal models are considered, both of which correspond to resonant $HH$ production via gluon$-$gluon fusion. The data are consistent with Standard Model predictions. Upper limits are set on the production cross-section times branching ratio to Higgs boson pairs of a new resonance in the mass range from 251 GeV to 5 TeV.

20 data tables

Cumulative acceptance times efficiency as a function of resonance mass for each event selection step in the resolved channel for the spin-0 signal models. The local maximum at 251 GeV is a consequence of the near-threshold kinematics.

Cumulative acceptance times efficiency as a function of resonance mass for each event selection step in the resolved channel for the spin-2 signal models. The local maximum at 251 GeV is a consequence of the near-threshold kinematics.

Corrected $m(HH)$ distribution in the resolved $4b$ validation region (dots), compared with the reweighted distribution in $2b$ validation region (teal histogram). The error bars on the $4b$ points represent the Poisson uncertainties corresponding to their event yields. The final bin includes overflow. The background uncertainty (gray band) is computed by adding all individual components in quadrature. The bottom panel shows the difference between the $4b$ and reweighted $2b$ distributions, relative to the $2b$ distribution.

More…

Measurement of $\psi(2S)$ nuclear modification at backward and forward rapidity in $p$ $+$ $p$, $p$ $+$ Al, and $p$ $+$ Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.C 105 (2022) 064912, 2022.
Inspire Record 2029951 DOI 10.17182/hepdata.130200

Suppression of the $J/\psi$ nuclear-modification factor has been seen as a trademark signature of final-state effects in large collision systems for decades. In small systems, the nuclear modification was attributed to cold-nuclear-matter effects until the observation of strong differential suppression of the $\psi(2S)$ state in $p/d$ $+$ $A$ collisions suggested the presence of final-state effects. Results of $J/\psi$ and $\psi(2S)$ measurements in the dimuon decay channel are presented here for $p$ $+$ $p$, $p$ $+$Al, and $p$ $+$Au collision systems at $\sqrt{s_{_{NN}}}=200$ GeV. The results are predominantly shown in the form of the nuclear-modification factor, $R_{pA}$, the ratio of the $\psi(2S)$ invariant yield per nucleon-nucleon collision in collisions of proton on target nucleus to that in $p$ $+$ $p$ collisions. Measurements of the $J/\psi$ and $\psi(2S)$ nuclear-modification factor are compared with shadowing and transport-model predictions, as well as to complementary measurements at Large-Hadron-Collider energies.

12 data tables

PSI(2S)-->MU+MU- invariant yields in p+p, p+Al, and p+Au collisions as a function of rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

J/PSI(1S)-->MU+MU- invariant yields in p+p, p+Al, and p+Au collisions as a function of rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

PSI(2S)-->MU+MU- nuclear modification in p+Al collisions as a function of rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.

More…

Search for type-III seesaw heavy leptons in leptonic final states in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 988, 2022.
Inspire Record 2027687 DOI 10.17182/hepdata.114228

A search for the pair production of heavy leptons as predicted by the type-III seesaw mechanism is presented. The search uses proton-proton collision data at a centre-of-mass energy of 13 TeV, corresponding to 139 fb$^{-1}$ of integrated luminosity recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis focuses on final states with three or four electrons or muons from the possible decays of new heavy leptons via intermediate electroweak bosons. No significant deviations above the Standard Model expectation are observed; upper and lower limits on the heavy lepton production cross-section and masses are derived respectively. These results are then combined for the first time with the ones already published by ATLAS using the channel with two leptons in the final state. The observed lower limit on the mass of the type-III seesaw heavy leptons combining two, three and four lepton channels together is 910 GeV at the 95% confidence level.

25 data tables

Expected background yields and observed data after the background-only fit in the SRs.

Distribution of $m_{\mathrm{T},3l}$ in the ZL SR after the background-only fit. The uncertainty on the expected number of background events includes all statistical and systematic post-fit uncertainties with the correlations between various background sources taken into account.

Distribution of $m_{\mathrm{T},3l}$ in the ZL Veto SR after the background-only fit. The uncertainty on the expected number of background events includes all statistical and systematic post-fit uncertainties with the correlations between various background sources taken into account.

More…

Two-particle Bose-Einstein correlations in pp collisions at ${\sqrt{s} = 13}$ TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 608, 2022.
Inspire Record 2027827 DOI 10.17182/hepdata.132012

This paper presents studies of Bose-Einstein correlations (BEC) in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 $\mu$b$^{-1}$ and 8.4 nb$^{-1}$ respectively. The BEC are measured for pairs of like-sign charged particles, each with $|\eta|$ < 2.5, for two kinematic ranges: the first with particle $p_T$ > 100 MeV and the second with particle $p_T$ > 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.

154 data tables

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the opposite hemisphere (OHP) like-charge particles pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

Comparison of single-ratio two-particle correlation functions, C<sub>2</sub><sup>data</sup>(Q) and C<sub>2</sub><sup>MC</sup>(Q), with the two-particle double-ratio correlation function, R<sub>2</sub>(Q), for the high-multiplicity track (HMT) events using the unlike-charge particle (UCP) pairs reference sample for k<sub>T</sub> - interval 1000 &lt; k<sub>T</sub> &le; 1500&nbsp;MeV.

The Bose-Einstein correlation (BEC) parameter R as a function of n<sub>ch</sub> for MB events using different MC generators in the calculation of R<sub>2</sub>(Q). The uncertainties shown are statistical. The lower panel of each plot shows the ratio of the BEC parameters obtained using EPOS LHC (red circles), Pythia 8 Monash (blue squares) and Herwig++ UE-EE-5 (green triangles) compared with the parameters obtained using Pythia 8 A2. The gray band in the lower panels is the MC systematic uncertainty, obtained as explained in the text.

More…

Version 2
Measurements of the Higgs boson inclusive and differential fiducial cross-sections in the diphoton decay channel with $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 08 (2022) 027, 2022.
Inspire Record 2023464 DOI 10.17182/hepdata.137886

A measurement of inclusive and differential fiducial cross-sections for the production of the Higgs boson decaying into two photons is performed using $139~\text{fb}^{-1}$ of proton--proton collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS experiment at the Large Hadron Collider. The inclusive cross-section times branching ratio, in a fiducial region closely matching the experimental selection, is measured to be $67\pm 6$ fb, which is in agreement with the state-of-the-art Standard Model prediction of $64\pm 4$ fb. Extrapolating this result to the full phase space and correcting for the branching ratio, the total cross-section for Higgs boson production is estimated to be $58\pm 6$ pb. In addition, the cross-sections in four fiducial regions sensitive to various Higgs boson production modes and differential cross-sections as a function of either one or two of several observables are measured. All the measurements are found to be in agreement with the Standard Model predictions. The measured transverse momentum distribution of the Higgs boson is used as an indirect probe of the Yukawa coupling of the Higgs boson to the bottom and charm quarks. In addition, five differential cross-section measurements are used to constrain anomalous Higgs boson couplings to vector bosons in the Standard Model effective field theory framework.

60 data tables

Measured inclusive cross sections in the five fiducial regions. Each systematic uncertainty source is fully uncorrelated with the other sources.

Measured differential cross section with associated uncertainties as a function of $p_{T}^{\gamma\gamma}$. Each systematic uncertainty source is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of $N_\mathrm{jets}$. Each systematic uncertainty source is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

More…

Version 2
Measurements of Higgs boson production cross-sections in the $H\to\tau^{+}\tau^{-}$ decay channel in $pp$ collisions at $\sqrt{s}=13\,\text{TeV}$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 08 (2022) 175, 2022.
Inspire Record 2014187 DOI 10.17182/hepdata.115994

Measurements of the production cross-sections of the Standard Model (SM) Higgs boson ($H$) decaying into a pair of $\tau$-leptons are presented. The measurements use data collected with the ATLAS detector from $pp$ collisions produced at the Large Hadron Collider at a centre-of-mass energy of $\sqrt{s}=13\,\text{TeV}$, corresponding to an integrated luminosity of $139\,\text{fb}^{-1}$. Leptonic ($\tau\to\ell\nu_{\ell}\nu_{\tau}$) and hadronic ($\tau\to\text{hadrons}~\nu_{\tau}$) decays of the $\tau$-lepton are considered. All measurements account for the branching ratio of $H\to\tau\tau$ and are performed with a requirement $|y_H|<2.5$, where $y_H$ is the true Higgs boson rapidity. The cross-section of the $pp\to H\to\tau\tau$ process is measured to be $2.94 \pm 0.21 \text{(stat)} ^{+\,0.37}_{-\,0.32} \text{(syst)}$ pb, in agreement with the SM prediction of $3.17\pm0.09~ \mbox{pb}$. Inclusive cross-sections are determined separately for the four dominant production modes: $2.65 \pm 0.41 \text{(stat)} ^{+\,0.91}_{-\,0.67} \text{(syst)}$ pb for gluon$-$gluon fusion, $0.197 \pm 0.028 \text{(stat)} ^{+\,0.032}_{-\,0.026} \text{(syst)}$ pb for vector-boson fusion, $0.115 \pm 0.058 \text{(stat)} ^{+\,0.042}_{-\,0.040} \text{(syst)}$ pb for vector-boson associated production, and $0.033 \pm 0.031 \text{(stat)} ^{+\,0.022}_{-\,0.017} \text{(syst)}$ pb for top-quark pair associated production. Measurements in exclusive regions of the phase space, using the simplified template cross-section framework, are also performed. All results are in agreement with the SM predictions.

36 data tables

Observed yields in the boost_0_1J signal region category of the hh channel.

Observed yields in the boost_0_ge2J signal region category of the hh channel.

Observed yields in the boost_1_1J signal region category of the hh channel.

More…

Search for single production of a vector-like $T$ quark decaying into a Higgs boson and top quark with fully hadronic final states using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 105 (2022) 092012, 2022.
Inspire Record 2013051 DOI 10.17182/hepdata.131522

A search is made for a vector-like $T$ quark decaying into a Higgs boson and a top quark in 13 TeV proton-proton collisions using the ATLAS detector at the Large Hadron Collider with a data sample corresponding to an integrated luminosity of 139 fb$^{-1}$. The Higgs-boson and top-quark candidates are identified in the all-hadronic decay mode, where $H\to b\bar{b}$ and $t\to b W \to b q \bar{q}^\prime$ are reconstructed as large-radius jets. The candidate Higgs boson, top quark, and associated B-hadrons are identified using tagging algorithms. No significant excess is observed above the background, so limits are set on the production cross-section of a singlet $T$ quark at 95% confidence level, depending on the mass, $m_T$, and coupling, $\kappa_T$, of the vector-like $T$ quark to Standard Model particles. In the considered mass range between 1.0 and 2.3 TeV, the upper limit on the allowed coupling values increases with $m_T$ from a minimum value of 0.35 for 1.07 < $m_T$ < 1.4 TeV to 1.6 for $m_T$ = 2.3 TeV.

8 data tables

Dijet invariant mass distribution for the $SR$ showing the results of the model when fitted to the data. A $T$-quark hypothesis with $m_{T} = 1.6$ TeV and $\kappa_{T} = 0.5$ is used in the fit.

Dijet invariant mass distribution for the $ttNR$ showing the results of the model when fitted to the data. A $T$-quark hypothesis with $m_{T} = 1.6$ TeV and $\kappa_{T} = 0.5$ is used in the fit.

Observed and expected 95% CL upper limits on the single $T$-quark coupling $\kappa_{T}$ as a function of $m_{T}$ are shown.

More…

Version 4
Search for Higgs boson pair production in the two bottom quarks plus two photons final state in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 106 (2022) 052001, 2022.
Inspire Record 1995886 DOI 10.17182/hepdata.105864

Searches are performed for nonresonant and resonant di-Higgs boson production in the $b\bar{b}\gamma\gamma$ final state. The data set used corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No excess above the expected background is found and upper limits on the di-Higgs boson production cross sections are set. A 95% confidence-level upper limit of 4.2 times the cross section predicted by the Standard Model is set on $pp \rightarrow HH$ nonresonant production, where the expected limit is 5.7 times the Standard Model predicted value. The expected constraints are obtained for a background hypothesis excluding $pp \rightarrow HH$ production. The observed (expected) constraints on the Higgs boson trilinear coupling modifier $\kappa_{\lambda}$ are determined to be $[-1.5, 6.7]$ $([-2.4, 7.7])$ at 95% confidence level, where the expected constraints on $\kappa_{\lambda}$ are obtained excluding $pp \rightarrow HH$ production from the background hypothesis. For resonant production of a new hypothetical scalar particle $X$ ($X \rightarrow HH \rightarrow b\bar{b}\gamma\gamma$), limits on the cross section for $pp \to X \to HH$ are presented in the narrow-width approximation as a function of $m_{X}$ in the range $251 \leq m_{X} \leq 1000$ GeV. The observed (expected) limits on the cross section for $pp \to X \to HH$ range from 640 fb to 44 fb (391 fb to 46 fb) over the considered mass range.

31 data tables

The BDT distribution of the di-Higgs ggF signal for two different values of $\kappa_{\lambda}$ and the main backgrounds in the low mass region ($m^{*}_{b\bar{b}\gamma\gamma} < 350$ GeV). Distributions are normalized to unit area. The dotted lines denote the category boundaries. Events with a BDT score below 0.881 in the low mass region are discarded.

The BDT distribution (with x-axis zoomed in) of the di-Higgs ggF signal for two different values of $\kappa_{\lambda}$ and the main backgrounds in the low mass region ($m^{*}_{b\bar{b}\gamma\gamma} < 350$ GeV). Distributions are normalized to unit area. The dotted lines denote the category boundaries. Events with a BDT score below 0.881 in the low mass region are discarded. The range of BDT scores is from 0.8 to 1.

The BDT distribution of the di-Higgs ggF signal for two different values of $\kappa_{\lambda}$ and the main backgrounds in the high mass region ($m^{*}_{b\bar{b}\gamma\gamma} > 350$ GeV). Distributions are normalized to unit area. The dotted lines denote the category boundaries. Events with a BDT score below 0.857 in the high mass region are discarded.

More…

A search for an unexpected asymmetry in the production of $e^+ \mu^-$ and $e^- \mu^+$ pairs in proton-proton collisions recorded by the ATLAS detector at $\sqrt s = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 830 (2022) 137106, 2022.
Inspire Record 1990948 DOI 10.17182/hepdata.115579

This search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for $e^+ \mu^-$ and $e^- \mu^+$ pairs to constrain physics processes beyond the Standard Model. It uses $139 \text{fb}^{-1}$ of proton$-$proton collision data recorded at $\sqrt{s} = 13$ TeV at the LHC. Targeting sources of new physics which prefer final states containing $e^{+}\mu^{-}$ to $e^{-}\mu^{+}$, the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the $R$-parity-violating coupling $\lambda'_{231}$ is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when $g_{\text{1R}}^{eu}=g_{\text{1R}}^{\mu c}=1$, at 95% confidence level. The limit on the coupling reduces to $g_{\text{1R}}^{eu}=g_{\text{1R}}^{\mu c}=0.46$ for a mass of 1420 GeV.

26 data tables

Observed yields, and (post-fit) expected yields for the data-driven SM estimates. Yields are shown for the benchmark RPV-supersymmetry signal points in SR-RPV and the leptoquark signal points in SR-LQ after a fit excluding the $e^{+}\mu^{-}$ signal region and setting $\mu_{\text{sig}}=1$. Small weights correcting for muon charge biases affect all rows except that containing the fake-lepton estimate. These weights, $w_i$, cause non-integer yields. The uncertainties, $\sqrt{\sum_i w_i^2}$, are given for data to support the choice made to model the yields with a Poisson distribution.

The observed exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.0$.

The expected exclusion contour at 95% CL as a function of the smuon and neutralino masses, for $\lambda_{231}^{'}=1.0$.

More…

Version 2
Precision measurement of forward $Z$ boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Abellán Beteta, C. ; et al.
JHEP 07 (2022) 026, 2022.
Inspire Record 1990313 DOI 10.17182/hepdata.132011

A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.

27 data tables

Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.

Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.

More…