We have observed five new decay modes of the charmed baryon Λc+ using data collected with the CLEO II detector. Four decay modes, Λc+→pK¯0η, Ληπ+, Σ+η, and Σ*+η, are first observations of final states with an η meson, while the fifth mode, Λc+→ΛK¯0K+, requires the creation of an ss¯ quark pair. We measure the branching fractions of these modes relative to Λc+→pK−π+ to be 0.25±0.04±0.04, 0.35±0.05±0.06, 0.11±0.03±0.02, 0.17±0.04±0.03, and 0.12±0.02±0.02, respectively.
Integrated luminosity of 3.25 fb-1 have used, which corresponds to about 4 million C CBAR events.. Here X=P(LAMBDA/C)/sqrt(Ebeam**2-M(LAMBDA/C)**2).
Integrated luminosity of 3.25 fb-1 have used, which corresponds to about 4 million C CBAR events.. Here X=P(LAMBDA/C)/sqrt(Ebeam**2-M(LAMBDA/C)**2).
Integrated luminosity of 3.25 fb-1 have used, which corresponds to about 4 million C CBAR events.. Here X=P(LAMBDA/C)/sqrt(Ebeam**2-M(LAMBDA/C)**2).
A sample of events enriched in bb̄ quark pairs was selected in the data recorded by the DELPHI experiment at LEP during 1992 and 1993, by the presence of secondary decay vertices from short-lived particles. Using this sample, the average multiplicities of K s 0 , K ± , p(p̄), Λ( Λ ) and of charged particles in bb̄ events have been measured, distinguishing the component from fragmentation and the component coming from the decay of b-hadrons. The measurement of the average charge multiplicity in bb̄ events was used to compute the mean fractional beam energy carried by the primary b-hadron, and the difference in charged particle multiplicity between bb̄ events and light quark (uū, dd̄, ss̄) events.
Event multiplicity in bottom events.
Differential cross section for charged particles in BOTTOM tagged hemispheres.
Differential cross section for charged particles in untagged hemispheres.
We present a comparison of the strong couplings of light ($u$, $d$, and $s$), $c$, and $b$ quarks determined from multijet rates in flavor-tagged samples of hadronic $Z~0$ decays recorded with the SLC Large Detector at the SLAC Linear Collider. Flavor separation on the basis of lifetime and decay multiplicity differences among hadrons containing light, $c$, and $b$ quarks was made using the SLD precision tracking system. We find: $\alpha_s{_{\vphantom{y}}}~{uds}/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 0.987 \pm 0.027({\rm stat}) \pm 0.022({\rm syst}) \pm 0.022({\rm theory})$, $\alpha_s{_{\vphantom{y}}}~c/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.012 \pm 0.104 \pm 0.102 \pm 0.096$, and $\alpha_s{_{\vphantom{y}}}~b/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.026 \pm 0.041 \pm 0.041\pm 0.030.$
No description provided.
Inclusive momentum spectra are measured for all charged particles and for each of $\pi~{\pm}$, $K~{\pm}$, $K~0/\overline{K~0}$, and $p/\overline{p}$ in hadronic events produced via $e~+e~-$ annihilation at $\sqrt{s}$=58GeV . The measured spectra are compared with QCD predictions based on the modified leading log approximation(MLLA). The MLLA model reproduces the measured spectra well. The energy dependence of the peak positions of the spectra is studied by comparing the measurements with those at other energies. The energy dependence is also well described by the MLLA model.
Errors include both statistical and systematic errors.
Errors include both statistical and systematic errors.
Statistical errors only.
Measured forward backward asymmetries.
Forward-backward s-quark asymmetries from the separate processes.
Final s-quark forward-backward asymmetries.
We describe the sample of energetic single-photon events ( E γ > 15 GeV) collected by L3 in the 1991–1993 LEP runs. The event distributions agree with expectations from the Standard Model. The data are used to constrain the ZZ γ coupling and to set an upper limit of 4.1 × 10 −6 , μ B (90% C.L.) on the the magnetic moment of the τ neutrino.
The number of events expected from Standard Model is 8.2. Here UNSPEC is 'invisible' particle.
90 PCT C.L. limit on an anomalous magnetic moment for tau-neutrino from '1GAMMA + nothing' events. Magnetic moment in Bohr magnetons.
Inclusive π±, K± and\((p,\bar p)\) differential cross-sections in hadronic decays of the Z have been measured as a function ofz=Phadron/Pbeam, the scaled momentum. The results are based on approximately 520 000 events measured by the ALEPH detector at LEP during 1992. Charged particles are identified by their rate of ionization energy loss in the ALEPH Time Projection Chamber. The position, ξ*, of the peak in the ln(1/z) distribution is determined, and the evolution of the peak position with centre-of-mass energy is compared with the prediction of QCD.
No description provided.
No description provided.
No description provided.
We have studied the production of D*± mesons in a sample of 1.25 million multihadronic decays of the Z0, in which 1969 candidates have been identified. We have determined the total multiplicity of charged D* mesons in multihadronic Z0 decays to be
No description provided.
Multiplicity data uncorrected for decay branching ratios.
No description provided.
Experimental evidence for the existence of orbitally excited B meson states is presented in an analysis of the Bπ and B ∗ π distribution of Q = m(B ∗∗ ) − m(B (∗) ) − m(π) using Z 0 decay data taken with the DELPHI detector at LEP. The mean Q-value of the decays B ∗∗ → B (∗) π is measured to be 284 ± 5 (stat.) ± 15 (syst.) MeV/c 2 , and the Gaussian width of the signal is 79 ± 5 (stat.) ± 8 (syst.) MeV/c 2 . This signal can be described as a single resonance of mass m = 5732 ± 5 (stat.) ± 20 (syst.) MeV/c 2 and full width Γ = 145 ± 28 MeV/c 2 . The observed shape is also consistent with the production of several broad and narrow states as predicted by the quark model and partly observed in the D-meson sector. The production rate of B ∗∗ per b-jet is found to be 0.27 ± 0.02 (stat.) ± 0.06 (syst.).
No description provided.
We have measured, with electron tagging, the forward-backward asymmetries of charm- and bottom-quark pair productions at $\langle \sqrt{s} \rangle$=58.01GeV, based on 23,783 hadronic events selected from a data sample of 197pb$~{-1}$ taken with the TOPAZ detector at TRISTAN. The measured forward-backward asymmetries are $A_{FB}~c = -0.49 \pm 0.20(stat.) \pm 0.08 (sys.)$ and $A_{FB}~b = -0.64 \pm 0.35(stat.) \pm 0.13 (sys.)$, which are consistent with the standard model predictions.
No description provided.