Date

Studies of quantum chromodynamics with the ALEPH detector

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Phys.Rept. 294 (1998) 1-165, 1998.
Inspire Record 428072 DOI 10.17182/hepdata.47582

Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its flavour independence, tests of the SU(3) gauge structure of QCD, study of coherence effects, and measurements of single-particle inclusive distributions and two-particle correlations for many identified baryons and mesons.

44 data tables

Charged particle sphericity distribution.

Charged particle aplanarity distribution.

Charged particle Thrust distribution.

More…

Accurate measurement of F2(d)/F2(p) and R(d)-R(p).

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badełek, B. ; et al.
Nucl.Phys.B 487 (1997) 3-26, 1997.
Inspire Record 426595 DOI 10.17182/hepdata.32750

Results are presented for F2d/F2p and Rd-Rp from simultaneous measurements of deep inelastic muon scattering on hydrogen and deuterium targets, at 90, 120, 200 and 280 GeV. The difference Rd-Rp, determined in the range 0.0020.1 the ratio decreases with Q^2.

23 data tables

No description provided.

No description provided.

No description provided.

More…

A high statistics search for nu/mu (anti-nu/mu) --> nu/e (anti-nu/e) oscillations in the small mixing angle regime.

The CCFR/NuTeV collaboration Romosan, A. ; Arroyo, C.G. ; de Barbaro, L. ; et al.
Phys.Rev.Lett. 78 (1997) 2912-2915, 1997.
Inspire Record 426120 DOI 10.17182/hepdata.41667

Limits on $\nu_\mu (\overline{\nu}_\mu) \to \nu_e (\overline{\nu}_e)$ oscillations based on a statistical separation of $\nu_e N$ charged current interactions in the CCFR detector at Fermilab are presented. $\nu_e$ interactions are identified by the difference in the longitudinal shower energy deposition pattern of $\nu_e N \rightarrow eX$ versus $\nu_\mu N \to \nu_\mu X$ interactions. Neutrino energies range from 30 to 600 GeV with a mean of 140 GeV, and $\nu_\mu$ flight lengths vary from 0.9 km to 1.4 km. The lowest 90% confidence upper limit in $sin^2 2\alpha$ of $1.1 \times 10^{-3}$ is obtained at $\Delta m^2 \sim 300 eV^2$. For $sin^2 2\alpha = 1$, $\Delta m^2 > 1.6 eV^2$ is excluded, and for $\Delta m^2 \gg 1000 eV^2$, $sin^2 2\alpha > 1.8 \times 10^{-3}$ is excluded. This result is the most stringent limit to date for $\Delta m^2 > 25 eV^2$ and it excludes the high $\Delta m^2$ oscillation region favoured by the LSND experiment. The $\nu_\mu$-to-$\nu_e$ cross-section ratio was measured as a test of $\nu_\mu (\bar\nu_\mu) \leftrightarrow \nu_e (\bar\nu_e)$ universality to be $1.026 \pm 0.055$.

2 data tables

ALPHA is the neutrino mixing angle. The result for SIN(ALPHA)**2 from the fit at each Delta(M)**2 for NUMU -->NUE oscillations. The 90% CL upper limit is equal to the best fit SIN(ALPHA)**2 + 1.2*SIGMA.

No description provided.


Determination of the longitudinal proton structure function F(L)(x,Q**2) at low x.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Phys.Lett.B 393 (1997) 452-464, 1997.
Inspire Record 426362 DOI 10.17182/hepdata.44694

A measurement of the inclusive cross section for the deep-inelastic scattering of positrons off protons at HERA is presented at momentum transfers $8.5 \leq Q~2 \leq 35 GeV~2$ and large inelasticity $y = 0.7$, i.e. for the Bjorken-x range $0.00013 \leq x \leq 0.00055$. Using a next-to-leading order QCD fit to the structure function F_2 at lower y values, the contribution of F_2 to the measured cross section at high y is calculated and, by subtraction, the longitudinal structure function F_{L} is determined for the first time with an average value of $F_L=0.52 \pm 0.03 (stat)$~ {+0.25}_{-0.22}$ (syst) at $Q~2=15.4 GeV~2$ and $x=0.000243$.

3 data tables

Inclusive cross section scaled by the kinematic factor K given by:. X*Q**4/((2*PI*ALPHA**2)*Y+). Y+=2(1-Y)+Y**2.

F2 values corresponding to the cross section measurements. X*Q**4/((2*PI*ALPHA**2)*Y+). Y+=2(1-Y)+Y**2.

Longitudinal structure function measurements.


Measurement of inclusive omega and eta' production in hadronic Z decays.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 393 (1997) 465-476, 1997.
Inspire Record 427107 DOI 10.17182/hepdata.47618

We present a study of the inclusive ω and η′ production based on 3.1 million hadronic Z decays recorded with the L3 detector at LEP during 1991–1994. The production rates per hadronic Z decay have been measured to be 1.17±0.17 ω mesons and 0.25±0.04 η′ mesons. The production rates and the differential cross sections have been compared with predictions of the JETSET and the HERWIG Monte Carlo models. We have observed that the differential cross sections can be described by an analytical quantum chromodynamics calculation.

12 data tables

Final production rates per hadronic Z0 decay.

Corrected production rates from the omega --> pi+ pi- p0 decay mode. Extrapolation to full x range.

Corrected production rates from the etaprime --> pi+ pi- eta decay mode. Extrapolation to full x range.

More…

Measurement of the proton and deuteron structure functions, F2(p) and F2(d), and of the ratio sigma(L)/sigma(T).

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badełek, B. ; et al.
Nucl.Phys.B 483 (1997) 3-43, 1997.
Inspire Record 424154 DOI 10.17182/hepdata.32752

The muon-proton and muon-deuteron inclusive deep inelastic scattering cross sections were measured in the kinematic range 0.002 < x < 0.60 and 0.5 < Q2 < 75 GeV2 at incident muon energies of 90, 120, 200 and 280 GeV. These results are based on the full data set collected by the New Muon Collaboration, including the data taken with a small angle trigger. The extracted values of the structure functions F2p and F2d are in good agreement with those from other experiments. The data cover a sufficient range of y to allow the determination of the ratio of the longitudinally to transversely polarised virtual photon absorption cross sections, R= sigma(L)/sigma(T), for 0.002 < x < 0.12 . The values of R are compatible with a perturbative QCD prediction; they agree with earlier measurements and extend to smaller x.

33 data tables

Corrected F2P measurements averaged over all energies. Data are the statistically weighted averages given at the centre of each bin.

Corrected F2P measurements averaged over all energies. Data are the statistically weighted averages given at the centre of each bin.

Corrected F2P measurements averaged over all energies. Data are the statistically weighted averages given at the centre of each bin.

More…

Measurement of charged particle transverse momentum spectra in deep inelastic scattering.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Nucl.Phys.B 485 (1997) 3-24, 1997.
Inspire Record 424463 DOI 10.17182/hepdata.44710

Transverse momentum spectra of charged particles produced in deep inelastic scattering are measured as a function of the kinematic variables x_B and Q2 using the H1 detector at the ep collider HERA. The data are compared to different parton emission models, either with or without ordering of the emissions in transverse momentum. The data provide evidence for a relatively large amount of parton radiation between the current and the remnant systems.

48 data tables

Charged particle PT distribution in the pseudorapidity interval 1.5 to 2.5.

Charged particle PT distribution in the pseudorapidity interval 1.5 to 2.5.

Charged particle PT distribution in the pseudorapidity interval 1.5 to 2.5.

More…

Measurement of the proton and deuteron spin structure function g1 in the resonance region.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.Lett. 78 (1997) 815-819, 1997.
Inspire Record 426735 DOI 10.17182/hepdata.19582

We have measured the proton and deuteron spin structure functions g_1^p and g_1^d in the region of the nucleon resonances for W^2 < 5 GeV^2 and $Q^2\simeq 0.5$ and $Q^2\simeq 1.2$ GeV^2 by inelastically scattering 9.7 GeV polarized electrons off polarized $^{15}NH_3$ and $^{15}ND_3$ targets. We observe significant structure in g_1^p in the resonance region. We have used the present results, together with the deep-inelastic data at higher W^2, to extract $\Gamma(Q^2)\equiv\int_0^1 g_1(x,Q^2) dx$. This is the first information on the low-Q^2 evolution of Gamma toward the Gerasimov-Drell-Hearn limit at Q^2 = 0.

8 data tables

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the resonance region W**2 < 4 GeV**2.

The integral of the structure functions g1 for the full W region including the deep-inelastic region as given by fits to the world's data.

More…

Tuning and test of fragmentation models based on identified particles and precision event shape data.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1996) 11-60, 1996.
Inspire Record 424112 DOI 10.17182/hepdata.47800

Event shape and charged particle inclusive distributions are measured using 750000 decays of the Z to hadrons from the DELPHI detector at LEP. These precise data allow a decisive confrontation with models of the hadronization process. Improved tunings of the JETSET, ARIADNE and HERWIG parton shower models and the JETSET matrix element model are obtained by fitting the models to these DELPHI data as well as to identified particle distributions from all LEP experiments. The description of the data distributions by the models is critically reviewed with special importance attributed to identified particles.

56 data tables

Transverse momentum PTIN w.r.t. the Thrust axis. For the first table Thrust axis definition is from seen charged particles corrected to final state particles. For the second table Thrust axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.

Transverse momentum PTOUT w.r.t. the Thrust axis. For the first table Thrust axis definition is from seen charged particles corrected to final state particles. For the second table Thrust axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.

Transverse momentum PTIN w.r.t. the Sphericity axis. For the first table Sphericity axis definition is from seen charged particles corrected to final state particles. For the second table Sphericity axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.

More…

Charged particle multiplicities in deep inelastic scattering at HERA.

The H1 collaboration Aid, S. ; Anderson, M. ; Andreev, V. ; et al.
Z.Phys.C 72 (1996) 573-592, 1996.
Inspire Record 422230 DOI 10.17182/hepdata.44709

Using the H1 detector at HERA, charged particle multiplicity distributions in deep inelastic ep scattering have been measured over a large kinematical region. The evolution with $W$ and $Q~2$ of the multiplicity distribution and of the multiplicity moments in pseudorapidity domains of varying size is studied in the current fragmentation region of the hadronic centre-of-mass frame. The results are compared with data from fixed target lepton-nucleon interactions, $e~+e~-$ annihilations and hadron-hadron collisions as well as with expectations from QCD based parton models. Fits to the Negative Binomial and Lognormal distributions are presented.

12 data tables

Fully corrected multiplicity distributions. Note that the value of P0 in the 1 to 5 pseudorapidity region is not measured but taken from the reweighted DJANGO 6.0 Monte Carlo generator.

Fully corrected multiplicity distributions. Note that the value of P0 in the 1 to 5 pseudorapidity region is not measured but taken from the reweighted DJANGO 6.0 Monte Carlo generator.

Fully corrected multiplicity distributions. Note that the value of P0 in the 1 to 5 pseudorapidity region is not measured but taken from the reweighted DJANGO 6.0 Monte Carlo generator.

More…