The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.
The charged particle multiplicity density measurements for the nine centrality classes. Also given are the mean values of NPART, the number of participating nucleon pairs calulcated fromthe Glauber model. The errors shown are the systematic errors, with the statistical errors being small.
The dependence of the charged particle multiplicity density on the number of participants in the collisions.
The transverse momentum ($p_{\rm T}$) spectra and elliptic flow coefficient ($v_2$) of deuterons and anti-deuterons at mid-rapidity ($|y|<0.5$) are measured with the ALICE detector at the LHC in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV. The measurement of the $p_{\rm T}$ spectra of (anti-)deuterons is done up to 8 GeV/$c$ in 0-10% centrality class and up to GeV/$c$ in 10-20% and 20-40% centrality classes. The $v_2$ is measured in the $0.8 <p_{\rm T} <5$ GeV/$c$ interval and in six different centrality intervals (0-5%, 5-10%, 10-20%, 20-30%, 30-40% and 40-50%) using the scalar product technique. Measured $\pi^{\pm}$, K$^{\pm}$ and p+$\overline{\mathrm{p}}$ transverse-momentum spectra and $v_2$ are used to predict the deuteron $p_{\rm T}$ spectra and $v_2$ within the Blast-Wave model. The predictions are able to reproduce the $v_2$ coefficient in the measured $p_{\rm T}$ range and the transverse-momentum spectra for $p_{\rm T}>1.8$ GeV/$c$ within the experimental uncertainties. The measurement of the coalescence parameter $B_2$ is performed, showing a $p_{\rm T}$ dependence in contrast with the simplest coalescence model, which fails to reproduce also the measured $v_2$ coefficient. In addition, the coalescence parameter $B_2$ and the elliptic flow coefficient in the 20-40% centrality interval are compared with the AMPT model which is able, in its version without string melting, to reproduce the measured $v_2$($p_{\rm T}$) and the $B_2$($p_{\rm T}$) trend.
Deuteron $p_{\mathrm T}$ spectra for $p_{\mathrm T} > $ 4.4 GeV/$c$. Low $p_{\mathrm T}$ points can be found here 'http://hepdata.cedar.ac.uk/view/ins1380491'
$\overline{\mathrm d}/ d $ vs $p_{\mathrm T}$ for $p_{\mathrm T} > $ 4.4 GeV/$c$. Low $p_{\mathrm T}$ points can be found here 'http://hepdata.cedar.ac.uk/view/ins1380491'
v2 of anti-deuterons and deuterons vs $p_{\mathrm T}$ for different centrality intervals
The azimuthal anisotropy coefficient $v_2$ of prompt D$^0$, D$^+$, D$^{*+}$ and D$_s^+$ mesons was measured in mid-central (30-50% centrality class) Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV, with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays at mid-rapidity, $|y|<0.8$, in the transverse momentum interval $1<p_{\rm T}<24$ GeV/$c$. The measured D-meson $v_2$ has similar values as that of charged pions. The D$_s^+$ $v_2$, measured for the first time, is found to be compatible with that of non-strange D mesons. The measurements are compared with theoretical calculations of charm-quark transport in a hydrodynamically expanding medium and have the potential to constrain medium parameters.
$v_2$ vs. $p_{\rm T}$ of $D^0$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$=5.02 TeV in the centrality class 30-50% in the rapidity interval |$y$|<0.8. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.
$v_2$ vs. $p_{\rm T}$ of $D^+$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$=5.02 TeV in the centrality class 30-50% in the rapidity interval |$y$|<0.8. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.
$v_2$ vs. $p_{\rm T}$ of $D^{*+}$ mesons in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$=5.02 TeV in the centrality class 30-50% in the rapidity interval |$y$|<0.8. The second (sys) error is the systematic uncertainty from the B feed-down contribution. The first (sys) error is the systematic uncertainty from the other sources.
The production of charm jets in proton-proton collisions at a center-of-mass energy of $\sqrt{s}=7$ TeV was measured with the ALICE detector at the CERN Large Hadron Collider. The measurement is based on a data sample corresponding to a total integrated luminosity of $6.23$ ${\rm nb}^{-1}$, collected using a minimum-bias trigger. Charm jets are identified by the presence of a D$^0$ meson among their constituents. The D$^0$ mesons are reconstructed from their hadronic decay D$^0\rightarrow$K$^{-}\pi^{+}$. The D$^0$-meson tagged jets are reconstructed using tracks of charged particles (track-based jets) with the anti-$k_{\mathrm{T}}$ algorithm in the jet transverse momentum range $5<p_{\rm{T,jet}}^{\mathrm{ch}}<30$ ${\rm GeV/}c$ and pseudorapidity $|\eta_{\rm jet}|<0.5$. The fraction of charged jets containing a D$^0$-meson increases with $p_{\rm{T,jet}}^{\rm{ch}}$ from $0.042 \pm 0.004\, \mathrm{(stat)} \pm 0.006\, \mathrm{(syst)}$ to $0.080 \pm 0.009\, \rm{(stat)} \pm 0.008\, \rm{(syst)}$. The distribution of D$^0$-meson tagged jets as a function of the jet momentum fraction carried by the D$^0$ meson in the direction of the jet axis ($z_{||}^{\mathrm{ch}}$) is reported for two ranges of jet transverse momenta, $5<p_{\rm{T,jet}}^{\rm{ch}}<15$ ${\rm GeV/}c$ and $15<p_{\rm{T,jet}}^{\rm{ch}}<30$ ${\rm GeV/}c$ in the intervals $0.2<z_{||}^{\rm{ch}}<1.0$ and $0.4<z_{||}^{\rm{ch}}<1.0$, respectively. The data are compared with results from Monte Carlo event generators (PYTHIA 6, PYTHIA 8 and Herwig 7) and with a Next-to-Leading-Order perturbative Quantum Chromodynamics calculation, obtained with the POWHEG method and interfaced with PYTHIA 6 for the generation of the parton shower, fragmentation, hadronisation and underlying event.
$p_{\rm T}$-differential cross section of charm jets tagged with D$^0$ mesons in pp collisions at $\sqrt{s}$ = 7 TeV.
Ratio of the $p_{\rm T}$-differential cross section of charm jets tagged with D$^0$ mesons to the inclusive jet cross section in pp collisions at $\sqrt{s}$ = 7 TeV.
$z_{||}^{\rm ch}$-differential cross section of D$^0$-meson tagged track-based jets in pp collisions at $\sqrt{s}$ = 7 TeV, with $p_{\rm T,D}$ > 2 GeV/$c$ and 5 < $p_{\rm T,jet}^{\rm ch}$ < 15 GeV/$c$.
This work presents the first experimental observation of the attractive strong interaction between a proton and a multi-strange baryon (hyperon) $\Xi^-$. The result is extracted from two-particle correlations of combined $\rm{p}-\Xi^{-}$$\oplus$$\rm{\bar{p}}-\bar{\Xi}^{+}$ pairs measured in p-Pb collisions at $\sqrt{s_{\rm{NN}}}=5.02$ TeV at the LHC with ALICE. The measured correlation function is compared with the prediction obtained assuming only an attractive Coulomb interaction and a standard deviation in the range $[3.6,5.3]$ is found. Since the measured $\rm{p}-\Xi^{-}$$\oplus$$\rm{\bar{p}}-\bar{\Xi}^{+}$ correlation is significantly enhanced with respect to the Coulomb prediction, the presence of an additional, strong, attractive interaction is evident. The data are compatible with recent lattice calculations by the HAL-QCD Collaboration, with a standard deviation in the range $ [1.8,3.7]$. The lattice potential predicts a shallow repulsive $\Xi^-$ interaction within pure neutron matter at saturation densities and this implies stiffer equations of state for neutron-rich matter including hyperons. Implications of the strong interaction for the modeling of neutron stars are discussed.
The p$-$p $\oplus$ $\overline{\mathrm{p}}-\overline{\mathrm{p}}$ correlation function.
The p$-\Xi^{-}$ $\oplus$ $\overline{\mathrm{p}}-\overline{\Xi}^{-}$ correlation function.
Measurements of anisotropic flow coefficients ($v_n$) and their cross-correlations using two- and multi-particle cumulant methods are reported in collisions of pp at $\sqrt{s} = 13$ TeV, p-Pb at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV, Xe-Xe at $\sqrt{s_{_{\rm NN}}} = 5.44$ TeV, and Pb-Pb at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV recorded with the ALICE detector. The multiplicity dependence of $v_n$ is studied in a very wide range from 20 to 3000 particles produced in the mid-rapidity region $|\eta|<0.8$ for the transverse momentum range $0.2 < p_{\rm T} < 3.0$ GeV/$c$. An ordering of the coefficients $v_2 > v_3 > v_4$ is found in pp and p-Pb collisions, similar to that seen in large collision systems, while a weak $v_2$ multiplicity dependence is observed relative to nucleus-nucleus collisions in the same multiplicity range. Using a novel subevent method, $v_{2}$ measured with four-particle cumulants is found to be compatible with that from six-particle cumulants in pp and p-Pb collisions. The magnitude of the correlation between $v_n^2$ and $v_m^2$, evaluated with the symmetric cumulants SC$(m,n)$ is observed to be positive at all multiplicities for $v_2$ and $v_4$, while for $v_2$ and $v_3$ it is negative and changes sign for multiplicities below 100, which may indicate a different $v_n$ fluctuation pattern in this multiplicity range. The observed long-range multi-particle azimuthal correlations in high multiplicity pp and p-Pb collisions can neither be described by PYTHIA 8 nor by IP-Glasma+MUSIC+UrQMD model calculations, and hence provide new insights into the understanding of collective effects in small collision systems.
$v_2\{2\}$ with $|\Delta \eta| > 1.4$ in pp collisions at $\sqrt{s} = 13$ TeV.
$v_3\{2\}$ with $|\Delta \eta| > 1.0$ in pp collisions at $\sqrt{s} = 13$ TeV.
$v_4\{2\}$ with $|\Delta \eta| > 1.0$ in pp collisions at $\sqrt{s} = 13$ TeV.
Inclusive J/$\psi$ production is studied in minimum-bias proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 5.02 TeV by ALICE at the CERN LHC. The measurement is performed at mid-rapidity ($|y| < 0.9$) in the dielectron decay channel down to zero transverse momentum $p_{\rm T}$, using a data sample corresponding to an integrated luminosity of $L_{\rm int} = 19.4 \pm$ 0.4 nb$^{-1}$. The measured $p_{\rm T}$-integrated inclusive J/$\psi$ production cross section is d$\sigma$/d$y$ = 5.64 $\pm$ 0.22 (stat.) $\pm 0.33$ (syst.) $\pm 0.12$ (lumi.) $\mu$b. The $p_{\rm T}$-differential cross section d$^{2} \sigma$/d$p_{\rm T}$d$y$ is measured in the $p_{\rm T}$ range 0$-$10 GeV/$c$ and compared with state-of-the-art perturbative QCD calculations. The J/$\psi$ $\langle p_{\rm T} \rangle$ and $\langle p_{\rm T}^{2} \rangle$ are extracted and compared with results obtained at other collision energies.
$p_{\rm T}$-integrated inclusive J/$\psi$ cross section.
$p_{\rm T}$-differential inclusive J/$\psi$ cross section.
Mean $p_{\rm T}$ square of the inclusive J/$\psi$ spectrum at 5.02 TeV.
The ALICE collaboration performed the first rapidity-differential measurement of coherent J/$\psi$ photoproduction in ultra-peripheral Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV. The J/$\psi$ is detected via its dimuon decay in the forward rapidity region ($-4.0 < y < -2.5$) for events where the hadronic activity is required to be minimal. The analysis is based on an event sample corresponding to an integrated luminosity of about 750 $\mu$b$^{-1}$. The cross section for coherent J/$\psi$ production is presented in six rapidity bins. The results are compared with theoretical models for coherent J/$\psi$ photoproduction. These comparisons indicate that gluon shadowing effects play a role in the photoproduction process. The ratio of $\psi'$ to J/$\psi$ coherent photoproduction cross sections was measured and found to be consistent with that measured for photoproduction off protons.
Differential cross section as a function of rapidity for coherent J/PSI photoproduction in ultra-peripheral Pb-Pb collisions.
Production cross sections of muons from semi-leptonic decays of charm and beauty hadrons were measured at forward rapidity ($2.5<y<4$) in proton--proton (pp) collisions at a centre-of-mass energy $\sqrt{s}=5.02$ TeV with the ALICE detector at the CERN LHC. The results were obtained in an extended transverse momentum interval, $2 < p_{\rm T} < 20$ GeV/$c$, and with an improved precision compared to previous measurements performed in the same rapidity interval at centre-of-mass energies $\sqrt{s}= 2.76$ and 7 TeV. The $p_{\rm T}$- and $y$-differential production cross sections as well as the $p_{\rm T}$-differential production cross section ratios between different centre-of-mass energies and different rapidity intervals are described, within experimental and theoretical uncertainties, by predictions based on perturbative QCD.
$p_{\rm T}$-differential production cross section of muons from heavy-flavour hadron decays at forward rapidity in pp collisions at $\sqrt{s}=5.02$ TeV in the rapidity interval $2.5 < y < 4$.
Production cross section of muons from heavy-flavour hadron decays as a function of rapidity in pp collisions at $\sqrt{s} = 5.02$ TeV for the $p_{\rm T}$ interval $2 < p_{\rm T} < 7$ GeV/$c$.
Production cross section of muons from heavy-flavour hadron decays as a function of rapidity in pp collisions at $\sqrt{s} = 5.02$ TeV for the $p_{\rm T}$ interval $7 < p_{\rm T} < 20$ GeV/$c$.
The cross section of jets reconstructed from charged particles is measured in the transverse momentum range of $5<p_\mathrm{T}<100\ \mathrm{GeV}/c$ in pp collisions at the center-of-mass energy of $\sqrt{s} = 5.02\ \mathrm{TeV}$ with the ALICE detector. The jets are reconstructed using the anti-$k_\mathrm{T}$ algorithm with resolution parameters $R=0.2$, $0.3$, $0.4$, and $0.6$ in the pseudorapidity range $|\eta|< 0.9-R$. The charged jet cross sections are compared with the leading order (LO) and to next-to-leading order (NLO) perturbative Quantum ChromoDynamics (pQCD) calculations. It was found that the NLO calculations agree better with the measurements. The cross section ratios for different resolution parameters were also measured. These ratios increase from low $p_\mathrm{T}$ to high $p_\mathrm{T}$ and saturate at high $p_\mathrm{T}$, indicating that jet collimation is larger at high $p_\mathrm{T}$ than at low $p_\mathrm{T}$. These results provide a precision test of pQCD predictions and serve as a baseline for the measurement in Pb$-$Pb collisions at the same energy to quantify the effects of the hot and dense medium created in heavy-ion collisions at the LHC.
Fig. 3: Fully corrected charged jet differential cross sections in pp collisions at $\\sqrt{s}$ = 5.02 TeV. Statistical uncertainties are displayed as vertical error bars. The total systematic uncertainties are shown as shaded bands around the data points. Data are scaled to enhance visibility.
Fig. 6: Charged jet cross section ratios for $\\sigma$(R = 0.2)/$\\sigma$(R = 0.4) (Red) and $\\sigma$(R = 0.2)/$\\sigma$(R = 0.6). The systematic uncertainty of the cross section ratio is indicated by a shaded band drawn around data points.
Charged jet differential cross sections with UE subtraction in pp collisions at $\sqrt{s}$ = 5.02 TeV. Statistical uncertainties are displayed as vertical error bars. The total systematic uncertainties are shown as shaded bands around the data points. Data are scaled to enhance visibility.