Measurement of trilinear gauge boson couplings W W V, (V = Z, gamma) in e+ e- collisions at 189-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 502 (2001) 9-23, 2001.
Inspire Record 553351 DOI 10.17182/hepdata.49769

Measurements of the trilinear gauge boson couplings WWgamma and WWZ are presented using the data taken by DELPHI in 1998 at a centre-of-mass energy of 189 GeV and combined with DELPHI data at 183 GeV. Values are determined for Delta(g_1^Z) and Delta(kappa_gamma), the differences of the WWZ charge coupling and of the WWgamma dipole coupling from their Standard Model values, and for lambda_gamma, the WWgamma quadrupole coupling. A measurement of the magnetic dipole and electric quadrupole moment of the W is extracted from the results for Delta(kappa_gamma) and lambda_gamma. The study uses data from the final states jjlv, jjjj, lX, jjX and gammaX, where j represents a quark jet, l an identified lepton and X missing four-momentum. The observations are consistent with the predictions of the Standard Model.

1 data table

No description provided.


Studies of W W and W Z production and limits on anomalous W W gamma and W W Z couplings

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 072002, 1999.
Inspire Record 499282 DOI 10.17182/hepdata.42124

Evidence of anomalous WW and WZ production was sought in pbar{p} collisions at a center-of-mass energy of sqrt(s) = 1.8 TeV. The final states $WW (WZ) to mu-nu-jet-jet + X, WZ to mu-nu-e-e + X and WZ to e-nu-e-e + X were studied using a data sample corresponding to an integrated luminosity of approximately 90 pb-1. No evidence of anomalous diboson production was found. Limits were set on anomalous WWgamma and WWZ couplings and were combined with our previous results. The combined 95% confidence level anomalous coupling limits for Lambda=2 TeV are -0.25 LE Delta-kappa LE 0.39 (lambda=0) and -0.18 LE lambda LE 0.19 (Delta \kappa = 0), assuming the WWgamma couplings are equal to the WWZ couplings.

2 data tables

CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONST(NAME=SCALE)**2)**n. KAPPA_GZ means KAPPA_GAMMA = KAPPA_Z. LAMBDA_GZ means LAMBDA_GAMMA = LAMBDA_Z.

CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONST(NAME=SCALE)**2)**n.