Inclusive jet cross sections have been measured in p¯p collisions at √s =546 and 1800 GeV, using the Collider Detector at Fermilab. The ratio of jet cross sections is compared to predictions from simple scaling and O(as3) QCD. Our data exclude scaling and lie (1.5–2.4)σ below a range of QCD predictions.
Additional systematic uncertainty +23,-26 pct.
Additional systematic uncertainty +-16 pct.
Additional systematic uncertainty +-0.22.
We report a study of electron proton collisions at very low Q 2 , corresponding to virtual photoproduction at centre of mass energies in the range 100–295 GeV. The distribution in transverse energy of the observed hadrons is much harder than can be explained by soft processes. Some of the events show back-to-back two-jet production at the rate and with the characteristics expected from hard two-body scattering. A subset of the two-jet events have energy in the electron direction consistent with that expected from the photon remnant in resolved photon processes.
No description provided.
Measurements of the analyzing power Ay(θ) for neutron-proton scattering have been performed at 7.6, 12.0, 14.1, 16.0, and 18.5 MeV. The experimental setup is described as are the finite-geometry corrections applied to the data. One of these corrections, due to the presence of carbon in the scintillators used for neutron detection, is discussed in detail. The Ay(θ) data are compared to the predictions of the Paris and Bonn nucleon-nucleon potentials and the predictions of two phase-shift analyses, one of which incorporates charge-independence breaking effects in the 3P waves.
Measured analyzing power at 7.6 MeV.
Measured analyzing power at 12.0 MeV.
Measured analyzing power at 14.1 MeV.
Using the detector ARGUS at thee+e− storage ring DORIS II, we have investigated inclusive momentum spectra of charged pions, kaons, and protons from decays of the υ(4S) meson. The kaon spectra have been measured in two independent ways, by coherently exploiting the detector's particle identification capabilities, and by detecting decays in-flight. The extracted mean multiplicities for charged hadrons are 7.17±0.05±0.14 pions, 1.56±0.03±0.05 kaons and 0.110±0.010±0.007 protons per υ(4S) decay, where pions and protons fromKso and Δ decays have been subtracted.
Inclusive pion spectrum from UPSI(4S) decays.
Inclusive pion spectrum from UPSI(4S) decays with KS and LAMBDA decay particles included.
Inclusive kaon spectrum from UPSI(4S) decays.
We present first results on the total photoproduction cross section measurement with the H1 detector at HERA. The data were extracted from low Q 2 collisions of 26.7 GeV electrons with 820 GeV protons. The γp total cross section has been measured by two independent methods in the γp center of mass energy range from 90 to 290 GeV. For an average center of mass energy of 195 GeV a value of σ tot ( γp ) = 159 ± 7 (stat.) ± 20 (syst.) μb was obtained.
Data from tagged sample.
Data from untagged sample.
We have studied single diffraction dissociation ( p p→ p X ) in proton-antiproton collisions at √ s =1.8TeV, covering the ranges 3⪅ M X ⪅200 GeV and 0.05⪅| t |⪅0.11 (GeV/ c ) 2 . Parameterizing the production to be of the form dσ ( d t d M 2 X ) = (M 2 X ) −α exp (bt) , we obtain α = 1.13±0.07 and b = 10.5±1.8(GeV/ c ) −2 . The total single diffraction dissociation cross section is 2 σ SD =8.1±1.7 mb. Comparisons are made to previous lower energy data, and to an earlier measurement by us at the same energy.
Total single diffraction cross section.
Measurements are presented of the inclusive cross section for K ∗ (892) ± production in hadronic decays of the Z 0 using a sample of about half a million events recorded with the OPAL experiment at LEP. Charged K ∗ mesons are reconstructed in the decay channel K 0 S π ± . A mean rate of 0.72±0.02±0.08 K ∗ mesons per hadronic event is found. Comparison of the results with predictions of the JETSET and HERWIG models shows that JETSET overestimates the K ∗± production cross section while HERWIG is consistent with the data.
No description provided.
No description provided.
Observation of the semileptonic decay of the charmed baryon in the decay channel has been made using the ARGUS detector at the e + e − storage ring DORIS II at DESY. The cross section times branching ratio was found to be .
No description provided.
No description provided.
Averaging the above two results.
The inclusive production cross sections of η′ (958) andfo (975) mesons are measured ine+e− annihilation in the nonresonant continuum around\(\sqrt s= 10\) GeV and in decays of the υ resonances using the ARGUS detector. For η′ (958) mesons, a production ratio of η′ (958)/ηdir=0.35±0.24, with ηdir=η−BR(η′→ηX)·η′, is determined in direct υ(1S) decays, which can be partially explained by the pseudoscalar singlet/octet mixing. Forfo(975) production, we obtain a production ratio offo(975)/p(770)°=0.17±0.030 in direct υ(1S) decays. In its production features, thefo(975) behaves like an ordinary meson, though aK\(\bar K\) molecule nature cannot be excluded. The substantial production yield of thefo(975) meson demonstrates the important effect of feeddown from mesons beyond the basic multiples on pseudoscalar and vector meson production.
Direct etaprime rates per event for the continuum region (9.36 to 10.45 GeV), the UPSI(1S) (9.46 GeV), UPSI(2S)(10.02 GeV) and UPSI(4S)(10.58 GeV) regions. Data is extrapolated to the full z region.
Radiation corrected normalized cross section for F0(975) production in the continuum events.
Normalized cross section for F0(975) production in direct UPSI(1S) decays.
From a sample of 146900 hadronicZ0 decays recorded by the OPAL detector at LEP, we have studied the azimuthal correlations of particles in hadronic events. It is expected that these correlations are sensitive to interference effects in QCD. We have compared the data to QCD Monte Carlo models which include and which do not include interference effects. We find that the distributions of azimuthal correlations are not reproduced by the parton shower models we have tested unless interference effects are included, no matter which hadronisation scheme is used.
Corrected data for the EMMC.
Corrected data for the TPAC.