Search for the Chiral Magnetic Effect with Isobar Collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR Collaboration at RHIC

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 105 (2022) 014901, 2022.
Inspire Record 1914564 DOI 10.17182/hepdata.115993

The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of $\cal P$ and $\cal CP$ symmetries of the strong interaction amidst a strong electro-magnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. In order to better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr at $\sqrt{s_{\rm NN}}=200$ GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.

225 data tables match query

fig2_left_low_isobarpaper_star_blue_case2_zrzr_nonzeros.

fig2_left_low_isobarpaper_star_grey_data_zrzr_nonzeros.

fig2_left_low_isobarpaper_star_red_case3_zrzr_nonzeros.

More…

Energy Dependence of Intermittency for Charged Hadrons in Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 845 (2023) 138165, 2023.
Inspire Record 2626682 DOI 10.17182/hepdata.137849

Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au$+$Au collisions and a decrease in the extracted scaling exponent ($\nu$) from peripheral to central collisions. The $\nu$ is consistent with a constant for different collisions energies in the mid-central (10-40%) collisions. Moreover, the $\nu$ in the 0-5% most central Au$+$Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV. The physics implications on the QCD phase structure are discussed.

48 data tables match query

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7 GeV.

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 19.6 GeV.

The scaled factorial moments, $F_{q}(M)$($q=$ 2-6), of identified charged hadrons ($h^{\pm}$) multiplicity in the most central (0-5\%) Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 39 GeV.

More…

Measurement of inclusive charged-particle jet production in Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 054913, 2020.
Inspire Record 1798665 DOI 10.17182/hepdata.95120

The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV. Jets are reconstructed with the anti-k$_{T}$ algorithm using charged tracks with pseudorapidity $|\eta|<1.0$ and transverse momentum $0.2<p_{T,jet}^{ch}<30$ GeV/$c$, with jet resolution parameter $R$=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-$p_T$) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the $p_T$ region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for $5<p_{T,jet}^{ch}<25$ GeV/$c$ and $5<p_{T,jet}^{ch}<30$ GeV/$c$, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the $pp$ yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high $p_T$, and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of $R$ exhibits no significant evidence for medium-induced broadening of the transverse jet profile for $R<0.4$ in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.

12 data tables match query

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in central (0-10%) Au+Au collisions for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in peripheral (60-80%) Au+Au collisions for pTlead,min = 5 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

Corrected inclusive charged-particle jet distributions in Au+Au collisions at 200 GeV for R=0.2, 0.3, and 0.4 in central (0-10%) Au+Au collisions for pTlead,min = 7 GeV/c. The first uncertainty is statistical (symmetric), followed by shape uncertainty (asymmetric) and correlated uncertainty (asymmetric).

More…

Version 2
Global polarization of $\Lambda$ hyperons in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adams, Joseph ; Agakishiev, Geydar ; et al.
Phys.Rev.C 98 (2018) 014910, 2018.
Inspire Record 1672785 DOI 10.17182/hepdata.99054

Global polarization of $\Lambda$ hyperons has been measured to be of the order of a few tenths of a percent in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV, with no significant difference between $\Lambda$ and $\bar{\Lambda}$. These new results reveal the collision energy dependence of the global polarization together with the results previously observed at $\sqrt{s_{_{NN}}}$ = 7.7 -- 62.4 GeV and indicate noticeable vorticity of the medium created in non-central heavy-ion collisions at the highest RHIC collision energy. The signal is in rough quantitative agreement with the theoretical predictions from a hydrodynamic model and from the AMPT (A Multi-Phase Transport) model. The polarization is larger in more peripheral collisions, and depends weakly on the hyperon's transverse momentum and pseudorapidity $\eta^H$ within $|\eta^H|<1$. An indication of the polarization dependence on the event-by-event charge asymmetry is observed at the $2\sigma$ level, suggesting a possible contribution to the polarization from the axial current induced by the initial magnetic field.

10 data tables match query

Global polarization of $\Lambda$ and $\bar{\Lambda}$ as a function of the collision energy $\sqrt{s_{_{NN}}}$ for 20-50% centrality Au+Au collisions. Thin lines show calculations from a 3+1D cascade + viscous hydrodynamic model (UrQMD+vHLLE) and bold lines show the AMPT model calculations. In the case of each model, primary $\Lambda$ with and without the feed-down effect are indicated by dashed and solid lines, respectively. Open boxes and vertical lines show systematic and statistical uncertainties, respectively. Note that the data points at 200 GeV and for $\bar{\Lambda}$ are slightly horizontally shifted for visibility.

$\Lambda$ ($\bar\Lambda$) polarization as a function of the collision centrality in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Open boxes and vertical lines show systematic and statistical uncertainties. The data points for Λ are slightly shifted for visibility.

Polarization of $\Lambda$ and $\bar\Lambda$ as a function of $p_{T}$ for the $20\%–60\%$ centrality bin in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Open boxes and vertical lines show systematic and statistical uncertainties, respectively. Hydrodynamic model calculations for Λ with two different initial conditions (IC) are compared. Note that the data points for Λ are slightly shifted for visibility.

More…

Azimuthal anisotropy measurements of strange and multi-strange hadrons in U+U collisions at $\sqrt{s_{NN}} = 193$ GeV at RHIC

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.C 103 (2021) 064907, 2021.
Inspire Record 1852040 DOI 10.17182/hepdata.102643

We present systematic measurements of azimuthal anisotropy for strange and multistrange hadrons ($K^{0}_{s}$, $\Lambda$, $\Xi$, and $\Omega$) and $\phi$ mesons at midrapidity ($|y| <$ 1.0) in collisions of U + U nuclei at $\sqrt{s_{NN}} = 193$ GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. Transverse momentum ($p_{\text{T}}$) dependence of flow coefficients ($v_{2}$, $v_{3}$, and $v_{4}$) is presented for minimum bias collisions and three different centrality intervals. Number of constituent quark scaling of the measured flow coefficients in U + U collisions is discussed. We also present the ratio of $v_{n}$ scaled by the participant eccentricity ($\varepsilon_{n}\left\lbrace 2 \right\rbrace$) to explore system size dependence and collectivity in U + U collisions. The magnitude of $v_{2}/\varepsilon_{2}$ is found to be smaller in U + U collisions than that in central Au + Au collisions contradicting naive eccentricity scaling. Furthermore, the ratios between various flow harmonics ($v_{3}/v_{2}^{3/2}$, $v_{4}/v_{2}^{4/2}$) are studied and compared with hydrodynamic and transport model calculations.

137 data tables match query

Event plane resolution as a function of centrality for $\psi_{2}$, $\psi_{3}$, and $\psi_{4}$ in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The statistical uncertainties are smaller than the markers.

The $p_{\text{T}}$ dependence of $v_{n}$ coefficients at mid-rapidity ($|y| <$ 1) in minimum bias U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The error bars represent statistical uncertainties. The bands represent point-by-point systematic uncertainties.

The $p_{\text{T}}$ dependence of $v_{n}$ coefficients at mid-rapidity ($|y| <$ 1) in minimum bias U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV. The error bars represent statistical uncertainties. The bands represent point-by-point systematic uncertainties.

More…

Beam-energy dependence of identified two-particle angular correlations in Au+Au collisions at RHIC

The STAR collaboration Adam, Jaroslav ; Adams, Joseph ; Agakishiev, Geydar ; et al.
Phys.Rev.C 101 (2020) 014916, 2020.
Inspire Record 1740846 DOI 10.17182/hepdata.105909

The two-particle angular correlation functions, $R_2$, of pions, kaons, and protons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV were measured by the STAR experiment at RHIC. These correlations were measured for both like-sign and unlike-sign charge combinations and versus the centrality. The correlations of pions and kaons show the expected near-side ({\it i.e.}, at small relative angles) peak resulting from short-range mechanisms. The amplitudes of these short-range correlations decrease with increasing beam energy. However, the proton correlation functions exhibit strong anticorrelations in the near-side region. This behavior is observed for the first time in an A+A collision system. The observed anticorrelation is $p_{T}$-independent and decreases with increasing beam energy and centrality. The experimental results are also compared to the Monte Carlo models UrQMD, Hijing, and AMPT.

44 data tables match query

Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 7.7 GeV

Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 11.5 GeV

Angular correlation function R2(∆y,∆φ) of like-sign pions in Au+Au collisions at mid centrality 30%-40% and 0.2 < pT < 2.0 GeV/c at 14.5 GeV

More…

Measurement of inclusive electrons from open heavy-flavor hadron decays in $p$+$p$ collisions at $\sqrt{s} = 200$ GeV with the STAR detector

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.D 105 (2022) 032007, 2022.
Inspire Record 1928900 DOI 10.17182/hepdata.113876

We report a new measurement of the production cross section for inclusive electrons from open heavy-flavor hadron decays as a function of transverse momentum ($p_{\rm T}$) at mid-rapidity ($|y|<$ 0.7) in $p$+$p$ collisions at $\sqrt{s} = 200$ GeV. The result is presented for 2.5 $<p_{\rm T}<$ 10 GeV/$c$ with an improved precision above 6 GeV/$c$ with respect to the previous measurements, providing more constraints on perturbative QCD calculations. Moreover, this measurement also provides a high-precision reference for measurements of nuclear modification factors for inclusive electrons from open-charm and -bottom hadron decays in heavy-ion collisions.

4 data tables match query

Signal-to-background ratio as a function of $p_{T}$, where the signals are non-photonic electrons [$N_{\rm INE}\times P_{\rm e} - N_{\rm PHE}/\varepsilon_{PHE}$ in Eq.$1$ shown in paper text] and the backgrounds are photonic electrons [$N_{\rm PHE}/\varepsilon_{PHE}$ in Eq.$1$], in $p$+$p$ collisions at $\sqrt{s}=200$ GeV. The vertical bars represent statistical uncertainties while the boxes represent systematic uncertainties.

Invariant cross sections of the electrons from decays of prompt $J/\Psi$ (dot-dashed line), $\Upsilon$ (dotted line), Drell-Yan (long dash-dotted line), light vector mesons (long dashed line) and the combined HDE (hadron decayed electron) contributions (solid line) in $p$+$p$ collisions at $\sqrt{s}=200$ GeV. The bands represent systematic uncertainties.

(a) The NPE (non-photonic electron) cross section after subtracting the light vector meson contribution at STAR in $p$+$p$ collisions at $\sqrt{s}=200$ GeV from $2012$ (filled circles) along with published STAR data from $2005$ and $2008$ (filled down triangles), published PHENIX data from $2005$ (filled up triangles) and power-law fit (curve). (b) Ratio of data over power-law fit. The vertical bars and the boxes represent statistical and systematic uncertainties, respectively.

More…

First measurement of $\Lambda_c$ baryon production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.Lett. 124 (2020) 172301, 2020.
Inspire Record 1762441 DOI 10.17182/hepdata.94228

We report on the first measurement of the charmed baryon $\Lambda_c^{\pm}$ production at midrapidity ($|y|$ $<$ 1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV collected by the STAR experiment at the Relativistic Heavy Ion Collider. The $\Lambda_c$/$D^0$ (denoting ($\Lambda_c^++\Lambda_c^-$)/($D^0+\bar{D^0}$)) yield ratio is measured to be 1.08 $\pm$ 0.16 (stat.) $\pm$ 0.26 (sys.) in the 0--20% most central Au+Au collisions for the transverse momentum ($p_T$) range 3 $<$ $p_T$ $<$ 6 GeV/$c$. This is significantly larger than the PYTHIA model calculations for $p+p$ collisions. The measured $\Lambda_c$/$D^0$ ratio, as a function of $p_T$ and collision centrality, is comparable to the baryon-to-meson ratios for light and strange hadrons in Au+Au collisions. Model calculations including coalescence hadronization for charmed baryon and meson formation reproduce the features of our measured $\Lambda_c$/$D^0$ ratio.

7 data tables match query

The $pK\pi$ invariant mass distributions (Counts per 10 MeV/c^2 bin) for right-sign combinations in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200\,GeV for 0--20\% centrality class.

The $pK\pi$ invariant mass distributions (Counts per 10 MeV/c^2 bin) for wrong-sign combinations, scaled by 1/3, in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200\,GeV for 0--20\% centrality class.

The $pK\pi$ invariant mass distributions (Counts per 10 MeV/c^2 bin) for right-sign combinations in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200\,GeV for 10--80\% centrality class.

More…

$K^{*0}$ production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV from RHIC beam energy scan

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 034907, 2023.
Inspire Record 2642282 DOI 10.17182/hepdata.134956

We report the measurement of $K^{*0}$ meson at midrapidity ($|y|<$ 1.0) in Au+Au collisions at $\sqrt{s_{\rm NN}}$~=~7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse momentum of $K^{*0}$ are presented as functions of collision centrality and beam energy. The $K^{*0}/K$ yield ratios are presented for different collision centrality intervals and beam energies. The $K^{*0}/K$ ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and p+p). The $K^{*0}/K$ ratio follows a similar centrality dependence to that observed in previous RHIC and LHC measurements. The data favor the scenario of the dominance of hadronic re-scattering over regeneration for $K^{*0}$ production in the hadronic phase of the medium.

71 data tables match query

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 0-20%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 20-40%).

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 40-60%).

More…

Polarization of $\Lambda$ ($\bar{\Lambda}$) hyperons along the beam direction in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.Lett. 123 (2019) 132301, 2019.
Inspire Record 1737354 DOI 10.17182/hepdata.105913

The $\Lambda$ ($\bar{\Lambda}$) hyperon polarization along the beam direction has been measured for the first time in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The polarization dependence on the hyperons' emission angle relative to the second-order event plane exhibits a sine modulation, indicating a quadrupole pattern of the vorticity component along the beam direction. The polarization is found to increase in more peripheral collisions, and shows no strong transverse momentum ($p_T$) dependence at $p_T>1$ GeV/$c$. The magnitude of the signal is about five times smaller than those predicted by hydrodynamic and multiphase transport models; the observed phase of the emission angle dependence is also opposite to these model predictions. In contrast, blast-wave model calculations reproduce the modulation phase measured in the data and capture the centrality and transverse momentum dependence of the signal once the model is required to reproduce the azimuthal dependence of the Gaussian source radii measured via the Hanbury-Brown and Twiss intensity interferometry technique.

5 data tables match query

$\langle \cos\theta_p* \rangle$ of $\Lambda$ and $\bar{\Lambda}$ hyperons as a function of azimuthal angle $\phi$ relative to the second-order event plane $\Psi_2$ for 20%–60% centrality bin in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

The second Fourier sine coefficient $\langle P_Z \sin(2\phi-2\Psi_2) \rangle$ of the polarization of $\Lambda$ and $\bar{\Lambda}$ along the beam direction as a function of the collision centrality in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

The second Fourier sine coefficient $\langle P_Z \sin(2\phi-2\Psi_2) \rangle$ of the polarization of $\Lambda$ and $\bar{\Lambda}$ along the beam direction as a function of the collision centrality in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV. Results updated with $\alpha_{\Lambda} = -\alpha_{\bar{\Lambda}} = 0.732$.

More…