Modifications to the distribution of charged particles with respect to high transverse momentum ($p_\mathrm{T}$) jets passing through a quark-gluon plasma are explored using the CMS detector. Back-to-back dijets are analyzed in lead-lead and proton-proton collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV via correlations of charged particles in bins of relative pseudorapidity and angular distance from the leading and subleading jet axes. In comparing the lead-lead and proton-proton collision results, modifications to the charged-particle relative distance distribution and to the momentum distributions around the jet axis are found to depend on the dijet momentum balance $x_j$, which is the ratio between the subleading and leading jet $p_\mathrm{T}$. For events with $x_j$$\approx$ 1, these modifications are observed for both the leading and subleading jets. However, while subleading jets show significant modifications for events with a larger dijet momentum imbalance, much smaller modifications are found for the leading jets in these events.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 0-10 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 10-30 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
The distribution of charged particle yields within $|\Delta\varphi| < 1.0$ correlated with the leading jets as a function of $\Delta\eta$ in the 30-50 % centrality bin in PbPb collisions. The results are shown in different dijet momentum balance bins.
The coherent photoproduction of $\rm{J/\psi}$ and $\rm{\psi'}$ mesons was measured in ultra-peripheral Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV with the ALICE detector. Charmonia are detected in the central rapidity region for events where the hadronic interactions are strongly suppressed. The $\rm{J/\psi}$ is reconstructed using the dilepton ($l^{+} l^{-}$) and proton-antiproton decay channels, while for the $\rm{\psi'}$, the dilepton and the $l^{+} l^{-} \pi^{+} \pi^{-}$ decay channels are studied. The analysis is based on an event sample corresponding to an integrated luminosity of about 233 ${\mu b}^{-1}$. The results are compared with theoretical models for coherent $\rm{J/\psi}$ and $\rm{\psi'}$ photoproduction. The coherent cross section is found to be in a good agreement with models incorporating moderate nuclear gluon shadowing of about 0.65 at a Bjorken-$x$ of around $6\times 10^{-4}$, such as the EPS09 parametrization, however none of the models is able to fully describe the rapidity dependence of the coherent $\rm{J/\psi}$ cross section including ALICE measurements at forward rapidity. The ratio of $\rm{\psi'}$ to $\rm{J/\psi}$ coherent photoproduction cross sections was also measured and found to be consistent with the one for photoproduction off protons.
Measured differential cross section of coherent J/Psi photoproduction in Pb–Pb UPCs in |y|<0.8. The points show the measurements for different decay channels.
Measured differential cross section of coherent Psi(2S) photoproduction in Pb–Pb UPCs in |y|<0.8. The points show the measurements for different decay channels.
Measured rapidity differential cross section of coherent J/Psi photoproduction in Pb–Pb UPCs events.
The first measurement of the cross section for coherent J/$\psi$ photoproduction as a function of $|t|$, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV with the J/$\psi$ produced in the central rapidity region $|y|<0.8$, which corresponds to the small Bjorken-$x$ range $(0.3-1.4) \times 10^{-3}$. The measured $|t|$-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky-Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-$x$.
t-dependence of coherent J/psi photonuclear production cross section in Pb-Pb UPC.
pT**2-dependence of coherent J/psi photoproduction cross section in Pb-Pb UPC.
The first measurement of the production of pions, kaons, (anti-)protons and $\phi$ mesons at midrapidity in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV is presented. Transverse momentum ($p_{\rm T}$) spectra and $p_{\rm T}$-integrated yields are extracted in several centrality intervals bridging from p-Pb to mid-central Pb-Pb collisions in terms of final-state multiplicity. The study of Xe-Xe and Pb-Pb collisions allows systems at similar charged-particle multiplicities but with different initial geometrical eccentricities to be investigated. A detailed comparison of the spectral shapes in the two systems reveals an opposite behaviour for radial and elliptic flow. In particular, this study shows that the radial flow does not depend on the colliding system when compared at similar charged-particle multiplicity. In terms of hadron chemistry, the previously observed smooth evolution of particle ratios with multiplicity from small to large collision systems is also found to hold in Xe-Xe. In addition, our results confirm that two remarkable features of particle production at LHC energies are also valid in the collision of medium-sized nuclei: the lower proton-to-pion ratio with respect to the thermal model expectations and the increase of the $\phi$-to-pion ratio with increasing final-state multiplicity.
$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-5%.
$p_{T}$-distributions of kaons ($K^{+}+K^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-5%.
$p_{T}$-distributions of protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-5%.
The first measurement of the coherent photoproduction of $\rho^{0}$ vector mesons in ultra-peripheral Xe-Xe collisions at $\sqrt{s_{\mathrm{\rm NN}}}= 5.44$ TeV is presented. This result, together with previous HERA $\gamma$p data and $\gamma$-Pb measurements from ALICE, describes the atomic number ($A$) dependence of this process, which is particularly sensitive to nuclear shadowing effects and to the approach to the black-disc limit of QCD at a semi-hard scale. The cross section of the ${\rm Xe}+{\rm Xe} \to \rho^{0} + {\rm Xe}+{\rm Xe}$ process, measured at midrapidity through the decay channel $\rho^{0}\to\pi^+\pi^-$, is found to be ${\rm d}\sigma/{\rm d}y=131.5\pm 5.6 {\rm (stat.)} ^{+17.5}_{-16.9} {\rm (syst.)}$ mb. The ratio of the continuum to resonant contributions for the production of pion pairs is also measured. In addition, the fraction of events accompanied by electromagnetic dissociation of either one or both colliding nuclei is reported. The dependence on $A$ of cross section for the coherent $\rho^{0}$ photoproduction at a centre-of-mass energy per nucleon of the $\gamma A$ system of $W_{\gamma A,n}= 65$ GeV is found to be consistent with a power-law behaviour $\sigma (\gamma A\rightarrow \rho^{0} A) \propto A^{\alpha}$ with a slope $\alpha = 0.96 \pm 0.02 {\rm (syst.)}$. This slope signals important shadowing effects, but it is still far from the behaviour expected in the black-disc limit.
Differential cross section as a function of rapidity for coherent RHO0 photoproduction in ultra-peripheral Xe-Xe collisions at ALICE.
The first measurements of the production of muons and electrons from heavy-flavour hadron decays in Xe-Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV, using the ALICE detector at the LHC, are reported. The measurement of the nuclear modification factor $R_{\rm AA}$ is performed as a function of transverse momentum $p_{\rm T}$ in several centrality classes at forward rapidity ($2.5 < y <4$) and midrapidity ($\vert y \vert < 0.8$) for muons and electrons from heavy-flavour hadron decays, respectively. A suppression by a factor up to about 2.5 compared to the binary-scaled pp reference is observed in central collisions at both central and forward rapidities. The $R_{\rm AA}$ of muons from heavy-flavour hadron decays is compared to previous measurements in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV. When the nuclear modification factors are compared in the centrality classes 0-10% for Xe-Xe collisions and 10-20% for Pb-Pb collisions, which have similar charged-particle multiplicity density, a similar suppression, with $R_{\rm AA} \sim 0.4$ in the $p_{\rm T}$ interval $4 < p_{\rm T} < 8$ GeV/$c$, is observed. The comparison of the measured $R_{\rm AA}$ values in the two collision systems brings new insights on the properties of the quark-gluon plasma by investigating the system-size and path-length dependence of medium-induced parton energy loss. The results of muons and electrons from heavy-flavour hadron decays provide new constraints to model calculations.
Transverse momentum differential production of muons from heavy-flavour hadron decays at forward rapidity in Xe-Xe collisions at 5.44 TeV.
Transverse momentum differential production of muons from heavy-flavour hadron decays at forward rapidity in Xe-Xe collisions at 5.44 TeV.
Transverse momentum differential production of muons from heavy-flavour hadron decays at forward rapidity in Xe-Xe collisions at 5.44 TeV.
Jet fragmentation transverse momentum ($j_{\rm T}$) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti-$k_{\rm T}$ algorithm with resolution parameter $R=0.4$ in the pseudorapidity range $|\eta|<0.25$. The $j_{\rm T}$ values are calculated for charged particles inside a fixed cone with a radius $R = 0.4$ around the reconstructed jet axis. The measured $j_{\rm T}$ distributions are compared with a variety of parton-shower models. Herwig and PYTHIA 8 based models describe the data well for the higher $j_{\rm T}$ region, while they underestimate the lower $j_{\rm T}$ region. The $j_{\rm T}$ distributions are further characterised by fitting them with a function composed of an inverse gamma function for higher $j_{\rm T}$ values (called the "wide component"), related to the perturbative component of the fragmentation process, and with a Gaussian for lower $j_{\rm T}$ values (called the "narrow component"), predominantly connected to the hadronisation process. The width of the Gaussian has only a weak dependence on jet transverse momentum, while that of the inverse gamma function increases with increasing jet transverse momentum. For the narrow component, the measured trends are successfully described by all models except for Herwig. For the wide component, Herwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region. These measurements set constraints on models of jet fragmentation and hadronisation.
$j_\mathrm{T}$ distribution in pp collisions at $\sqrt{s}$ = 5.02 TeV in $40 < p_\mathrm{T, jet}$ < 60 GeV/$c$.
$j_\mathrm{T}$ distributions in p--Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV in $40 < p_\mathrm{T, jet}$ < 150 GeV/$c$.
$\sqrt{\langle j_\mathrm{T}^2 \rangle }$ values for the narrow and wide components in pp collisions at $\sqrt{s}$ = 5.02 TeV in $40 < p_\mathrm{T, jet}$ < 60 GeV/$c$.
The production of $\Upsilon$ mesons in Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 5 TeV is measured with the muon spectrometer of the ALICE detector at the LHC. The yields as well as the nuclear modification factors are determined in the forward rapidity region $2.5
Rapidity-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).
Rapidity-differential yield of $\Upsilon(2\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).
$p_{\mathrm{T}}$-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).
Measurements of the production of muons from heavy-flavour hadron decays in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = $5.02$ and $2.76$ TeV using the ALICE detector at the LHC are reported. The nuclear modification factor $R_{\rm AA}$ at $\sqrt{s_{\rm NN}}$ = 5.02 TeV is measured at forward rapidity ($2.5 < y <4$) as a function of transverse momentum $p_{\rm T}$ in central, semi-central, and peripheral collisions over a wide $p_{\rm T}$ interval, $3 < p_{\rm T} < 20$ GeV/$c$, in which muons from beauty-hadron decays are expected to take over from charm as the dominant source at high $p_{\rm T}$ ($p_{\rm T} > 7$ GeV/$c$). The $R_{\rm AA}$ shows an increase of the suppression of the yields of muons from heavy-flavour hadron decays with increasing centrality. A suppression by a factor of about three is observed in the $10\%$ most central collisions. The $R_{\rm AA}$ at $\sqrt{s_{\rm NN}}$ = 5.02 is similar to that at 2.76 TeV. The precise $R_{\rm AA}$ measurements have the potential to distinguish between model predictions implementing different mechanisms of parton energy loss in the high-density medium formed in heavy-ion collisions. They place important constraints for the understanding of the heavy-quark interaction with the hot and dense QCD medium.
$p_{\rm T}$-differential yield of muons from heavy-flavour hadron decays at forward rapidity ($2.5 < y < 4$) for central (0--10%) and semi-central (20--40%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV.
$p_{\rm T}$-differential yield of muons from heavy-flavour hadron decays at forward rapidity ($2.5 < y < 4$) for peripheral (60--80%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV.
$p_{\rm T}$-differential yield of muons from heavy-flavour hadron decays at forward rapidity ($2.5 < y < 4$) for central (0--10%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV.
The prompt production of the charm baryon $\rm \Lambda_{c}^{+}$ and the $\rm \Lambda_{c}^{+}/\mathrm {D^0}$ production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$TeV. These new measurements show a clear decrease of the $\rm \Lambda_{c}^{+}/\mathrm {D^0}$ ratio with increasing transverse momentum ($p_{\rm T}$) in both collision systems in the range $2
Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section in pp collisions at $\sqrt{s} = 5.02$ TeV in the rapidity interval $|y|<0.5$.
Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section in p-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the rapidity interval $-0.96 \lt y \lt 0.04$.
The nuclear modification factor $R_\mathrm{pPb}$ of prompt $\Lambda_{\rm {c}}^{+}$ baryons in p-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the rapidity interval $ -0.96\lt y \lt 0.04$.