The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation CA/CF. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution y, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is 2.77±0.11±0.10. Due to non-perturbative effects, the data are below the expectation at small y. The transition from the perturbative to the non-perturbative domain appears at smaller y for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets.
Scaled energy distribution of charged hadrons produced in Quark jets in 'Y'topology 3-JET events.
Scaled energy distribution of charged hadrons produced in Gluon jets in 'Y'topology 3-JET events.
Scaled energy distribution of charged hadrons produced in Quark jets in 'Mercedes' topology 3-JET events.
We have searched for central production of a pair of photons with high transverse energies in $p\bar p$ collisions at $\sqrt{s} = 1.8$ TeV using $70 pb^{-1}$ of data collected with the D\O detector at the Fermilab Tevatron in 1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could rescatter pairs of nearly real photons into this final state via a box diagram. We observe no excess of events above background, and set lower 95% C.L. limits of $610, 870, or 1580 GeV/c^2$ on the mass of a spin 0, 1/2, or 1 Dirac monopole.
No description provided.
The shape of the transverse momentum distribution of W bosons (p_T(W)) produced in pbarp collisions at sqrt(s)= 1.8 TeV is measured with the DO detector at Fermilab. The result is compared to QCD perturbative and resummation calculations over the p_T(W) range from 0-200 GeV/c. The shape of the distribution is consistent with the theoretical prediction.
The first error is statistical, the first systematic (DSYS) error is the uncertainty in the background and efficiencies, the second is the systematic errorin the detector modelling.
We have measured the differential production cross sections as a function of scaled momentum x_p=2p/E_cm of the identified hadron species pi+, K+, K0, K*0, phi, p, Lambda0, and of the corresponding antihadron species in inclusive hadronic Z0 decays, as well as separately for Z0 decays into light (u, d, s), c and b flavors. Clear flavor dependences are observed, consistent with expectations based upon previously measured production and decay properties of heavy hadrons. These results were used to test the QCD predictions of Gribov and Lipatov, the predictions of QCD in the Modified Leading Logarithm Approximation with the ansatz of Local Parton-Hadron Duality, and the predictions of three fragmentation models. Ratios of production of different hadron species were also measured as a function of x_p and were used to study the suppression of strange meson, strange and non-strange baryon, and vector meson production in the jet fragmentation process. The light-flavor results provide improved tests of the above predictions, as they remove the contribution of heavy hadron production and decay from that of the rest of the fragmentation process. In addition we have compared hadron and antihadron production as a function of x_p in light quark (as opposed to antiquark) jets. Differences are observed at high x_p, providing direct evidence that higher-momentum hadrons are more likely to contain a primary quark or antiquark. The differences for pseudoscalar and vector kaons provide new measurements of strangeness suppression for high-x_p fragmentation products.
Charged pion fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
Charged kaon fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
Proton fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
The total and the differential cross-sections for the reaction e + e − → γγ ( γ ) have been measured with the DELPHI detector at LEP at centre-of-mass energies from 130 to 183 GeV for an integrated luminosity of 78.19 pb −1 . The results agree with the QED predictions. The lower limits (obtained including previously published results at the Z 0 energies) on the QED cutoff parameters are Λ + >253 GeV and Λ − >225 GeV and the lower bound on the mass of an excited electron with an effective coupling constant λ γ =1 is 231 GeV/ c 2 . All the limits are at the 95% confidence level.
The cross section of the previously published data (sqrt(s)=91.25 GeV, see PL 327B, 386) is given at the mean of the CM energies weighted by the luminosityat each point.
Statistical errors only. Additional overall systematic uncertainty is givenabove.
Statistical errors only. Additional overall systematic uncertainty is givenabove.
The DELPHI experiment at LEP uses Ring Imaging Cherenkov detectors for particle identification. The good understanding of the RICH detectors allows the identification of charged pions, kaons and proto
Mean particle multiplicities for Z0-->Q-QBAR events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.
Mean particle multiplicities for Z0-->B-BBAR events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.
Mean particle multiplicities for Z0-->(U-UBAR,D-DBAR,S-SBAR) events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.
Using the DZero detector at the 1.8 TeV pbarp Fermilab Tevatron collider, we have measured the inclusive dijet mass spectrum in the central pseudorapidity region |eta_jet| < 1.0 for dijet masses greater than 200 Gev/c^2. We have also measured the ratio of spectra sigma(|eta_jet| < 0.5)/sigma(0.5 < |eta_jet| < 1.0). The order alpha_s^3 QCD predictions are in good agreement with the data and we rule out models of quark compositeness with a contact interaction scale < 2.4 TeV at the 95% confidence level.
Dijet cross section for ABS(ETARAP)<1.0.
Ratio of cross sections for ABS(ETARAP) < 0.5 / 0.5 < ABS(ETARAP) < 1.0.
We have made a precise measurement of the central inclusive jet cross section at sqrt(s) = 1.8 TeV. The measurement is based on an integrated luminosity of 92 pb-1 collected at the Fermilab Tevatron pbar-p Collider with the D-Zero detector. The cross section, reported as a function of jet transverse energy (ET >= 60 GeV) in the pseudorapidity interval |eta| <= 0.5, is in good agreement with predictions from next-to-leading order quantum chromodynamics.
Inclusive cross section for ABS(ETARAP)<0.5. The quoted systematic (DSYS) errors do not include the luminosity uncertainty of 6.1 PCT.
Inclusive cross section for 0.1<=ABS(ETARAP)<=0.7. Data are taken from the AIP E-PAPS ftp site shown above. The quoted (DSYS) errors are the total systematic errors including the luminosity uncertainty.
This paper presents the first measurement of the inclusive J/Psi production cross section in the forward pseudorapidity region 2.5<|eta|<3.7 in ppbar collisions at sqrt(s)=1.8TeV. The results are based on 9.8 pb-1 of data collected using the D0 detector at the Fermilab Tevatron Collider. The inclusive J/Psi cross section for transverse momenta between 1 and 16 GeV/c is compared with theoretical models of charmonium production.
Only statistical errors are shown. Cross section tines branching ratio.
Using a data sample collected with the CLEO II detector at CESR, we have searched for dipion transitions between pairs of $\Upsilon$ resonances at energies near the $\Upsilon(4S)$. We obtain upper limits $B(\Upsilon(4S)\to \Upsilon(2S)\pi^+\pi^-) < 3.9 \times 10^{-4}$ and $B(\Upsilon(4S)\to \Upsilon(1S)\pi^+\pi^-) < 1.2 \times 10^{-4}$. We also observe the transitions $\Upsilon(3S)\to \Upsilon(1S)$, $\Upsilon(3S)\to \Upsilon(2S)$, and $\Upsilon(2S)\to \Upsilon(1S)$, from which we measure the cross-sections for the radiative processes $e^+e^- \to \Upsilon(3S)\gamma$ and $e^+e^- \to \Upsilon(2S)\gamma$.
The cross sections are averaged from the ones obtained for E+ E- --> GAMMA UPSI(nS) < PI+ PI- UPSI(mS) < MU+ MU- > > and E+ E- --> GAMMA UPSI(nS) < PI+ PI-UPSI(mS) < E+ E- > > channels with n=2,3, m=1,2.