Date

Measurements of Wgamma and Zgamma production in pp collisions at sqrt{s}= 7 TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.D 87 (2013) 112003, 2013.
Inspire Record 1217863 DOI 10.17182/hepdata.61926

The integrated and differential fiducial cross sections for the production of a W or Z boson in association with a high-energy photon are measured using pp collisions at sqrt{s} = 7 TeV. The analyses use a data sample with an integrated luminosity of 4.6 fb^{-1} collected by the ATLAS detector during the 2011 LHC data-taking period. Events are selected using leptonic decays of the W and Z bosons (W(e nu,mu nu) and Z(e+ e-, mu+ mu-, nu nubar)) with the requirement of an associated isolated photon. The data are used to test the electroweak sector of the Standard Model and search for evidence for new phenomena. The measurements are used to probe the anomalous WWgamma, ZZgamma and Zgammagamma triple-gauge-boson couplings and to search for the production of vector resonances decaying to Zgamma and Wgamma. No deviations from Standard Model predictions are observed and limits are placed on anomalous triple-gauge-boson couplings and on the production of new vector meson resonances.

24 data tables

The measured inclusive fiducial cross section of Wgamma (l;nu;gamma) decay channel. The first systematic (sys) error is the combined systematic uncertainty excluding that of the luminosity. The second (sys) error is the uncertainty on the luminosity.

The measured exclusive fiducial cross section of Wgamma (l;nu;gamma) decay channel. The first systematic (sys) error is the combined systematic uncertainty excluding that of the luminosity. The second (sys) error is the uncertainty on the luminosity.

The measured inclusive fiducial cross section of Zgamma (l+;l-;gamma) decay channel. The first systematic (sys) error is the combined systematic uncertainty excluding that of the luminosity. The second (sys) error is the uncertainty on the luminosity.

More…

Measurement of hard double-parton interactions in $W(\to l\nu)$+ 2 jet events at $\sqrt{s}$=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
New J.Phys. 15 (2013) 033038, 2013.
Inspire Record 1216670 DOI 10.17182/hepdata.63897

The production of W bosons in association with two jets in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$=7 TeV has been analysed for the presence of double-parton interactions using data corresponding to an integrated luminosity of 36/pb, collected with the ATLAS detector at the LHC. The fraction of events arising from double-parton interactions, $f_{DP}^{(D)}$ has been measured through the momentum balance between the two jets and amounts to $f_{DP}^{(D)} = 0.08 \pm 0.01 (stat.) \pm 0.02 (sys.)$ for jets with transverse momentum PT > 20 GeV and rapidity |y|<2.8. This corresponds to a measurement of the effective area parameter for hard double-parton interactions of $\sigma_{eff} = 15 \pm 3 (stat.)^{+5}_{-3}$ (sys.) mb.

2 data tables

Distribution of Delta(jets,normalised), defined in Eq. (11) of the paper as the transverse momentum of the dijet system normalised by the sum of the individual transverse momenta, in the data after unfolding to hadron level. The errors on the data represent the quadrature sum of the statistical and systematic uncertainties. Data have been normalised to unity.

Distribution of Delta(jets), defined in Eq. (10) of the paper as the transverse momentum of the dijet system, in the data after unfolding to hadron level. The errors on the data represent the quadrature sum of the statistical and systematic uncertainties. Data have been normalised to unity.


Measurement of the $t\bar{t}$ Production Cross Section in the $\tau$ +Jets Channel in $pp$ Collisions at $\sqrt{s} = 7$ TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 73 (2013) 2386, 2013.
Inspire Record 1216035 DOI 10.17182/hepdata.62683

The top-quark pair production cross section in 7 TeV center-of-mass energy proton–proton collisions is measured using data collected by the CMS detector at the LHC. The measurement uses events with one jet identified as a hadronically decaying τ lepton and at least four additional energetic jets, at least one of which is identified as coming from a b quark. The analyzed data sample corresponds to an integrated luminosity of 3.9 fb(−1) recorded by a dedicated multijet plus hadronically decaying τ trigger. A neural network has been developed to separate the top-quark pairs from the W+jets and multijet backgrounds. The measured value of is consistent with the standard model predictions.

1 data table

The measured cross section for top-quark pair production.


Search for long-lived, multi-charged particles in pp collisions at $\sqrt{s}$=7 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Lett.B 722 (2013) 305-323, 2013.
Inspire Record 1215605 DOI 10.17182/hepdata.61319

A search for highly ionising, penetrating particles with electric charges from |q| = 2e to 6e is performed using the ATLAS detector at the CERN Large Hadron Collider. Proton-proton collision data taken at $\sqrt{s}$=7 TeV during the 2011 running period, corresponding to an integrated luminosity of 4.4 fb$^{-1}$, are analysed. No signal candidates are observed, and 95% confidence level cross-section upper limits are interpreted as mass-exclusion lower limits for a simplified Drell--Yan production model. In this model, masses are excluded from 50 GeV up to 430, 480, 490, 470 and 420 GeV for charges 2e, 3e, 4e, 5e and 6e, respectively.

5 data tables

The 95% CL upper limit on the production cross section for charge 2 particles.

The 95% CL upper limit on the production cross section for charge 3 particles.

The 95% CL upper limit on the production cross section for charge 4 particles.

More…

Measurement of $W^+ W^-$ and $ZZ$ Production Cross Sections in $pp$ Collisions at $\sqrt{s} = 8 TeV$

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 721 (2013) 190-211, 2013.
Inspire Record 1215317 DOI 10.17182/hepdata.62680

The W+W- and ZZ production cross sections are measured in proton-proton collisions at sqrt(s) = 8 TeV with the CMS experiment at the LHC in data samples corresponding to an integrated luminosity of up to 5.3 inverse femtobarns. The measurements are performed in the leptonic decay modes W+W- to l' nu l'' nu and ZZ to 2l 2l', where l = e, mu and l'(l'') = e, mu, tau. The measured cross sections sigma(pp to W+W-) = 69.9 +/- 2.8 (stat.) +/- 5.6 (syst.) +/- 3.1 (lumi.) pb and sigma(pp to ZZ) = 8.4 +/- 1.0 (stat.) +/- 0.7 (syst.) +/- 0.4 (lumi.) pb, for both Z bosons produced in the mass region 60 < m[Z] < 120 GeV, are consistent with standard model predictions. These are the first measurements of the diboson production cross sections at sqrt(s) = 8 TeV.

2 data tables

The measured cross section for W+ W- production performed in the W --> LEPTONPRIME NU mode where LEPTONPRIME is electron, muon or tau.

The measured cross section for Z0Z0 production performed in the Z0 --> LEPTON LEPTONPRIME mode where LEPTON is E or MU and LEPTONPRIME is E, MU or TAU.


Centrality determination of Pb-Pb collisions at sqrt(sNN) = 2.76 TeV with ALICE

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 88 (2013) 044909, 2013.
Inspire Record 1215085 DOI 10.17182/hepdata.66916

This publication describes the methods used to measure the centrality of inelastic Pb-Pb collisions at a center-of-mass energy of 2.76 TeV per colliding nucleon pair with ALICE. The centrality is a key parameter in the study of the properties of QCD matter at extreme temperature and energy density, because it is directly related to the initial overlap region of the colliding nuclei. Geometrical properties of the collision, such as the number of participating nucleons and number of binary nucleon-nucleon collisions, are deduced from a Glauber model with a sharp impact parameter selection, and shown to be consistent with those extracted from the data. The centrality determination provides a tool to compare ALICE measurements with those of other experiments and with theoretical calculations.

6 data tables

$N_\mathrm{part}$ for Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV with the corresponding uncertainties derived from a Glauber calculation. The ${\langle N_\mathrm{part}^{\rm data} \rangle}$ are calculated from the NBD-Glauber fit to the VZERO amplitude, while the ${\langle N_\mathrm{part}^{\rm geo} \rangle}$ are obtained by slicing the impact parameter distribution. ${\langle N_\mathrm{part}^{\rm data} \rangle}$ is also calculated for two variations of the AP, i.e. moving it to 91 % (${\langle N_\mathrm{part}^{\rm data +} \rangle}$) and to 89 % (${\langle N_\mathrm{part}^{\rm data +} \rangle}$) respectively. The last three columns report the discrepancies between ${\langle N_\mathrm{part}^{\rm geo} \rangle}$ and ${\langle N_\mathrm{part}^{\rm data} \rangle}$ and ${\langle N_\mathrm{part}^{\rm data} \rangle}$ with the uncertainty of the AP.

Same as Table A.1 for $N_\mathrm{coll}$.

Same as Table A.1 for $T_\mathrm{AA}$.

More…

Measurement of the inclusive differential jet cross section in pp collisions at sqrt{s} = 2.76 TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
Phys.Lett.B 722 (2013) 262-272, 2013.
Inspire Record 1210881 DOI 10.17182/hepdata.60430

The ALICE collaboration at the CERN Large Hadron Collider reports the first measurement of the inclusive differential jet cross section at mid-rapidity in pp collisions at $\sqrt{s} = 2.76$ TeV, with integrated luminosity of 13.6 nb$^{-1}$. Jets are measured over the transverse momentum range 20 to 125 GeV/c and are corrected to the particle level. Calculations based on Next-to-Leading Order perturbative QCD are in good agreement with the measurements. The ratio of inclusive jet cross sections for jet radii $R = 0.2$ and $R = 0.4$ is reported, and is also well reproduced by a Next-to-Leading Order perturbative QCD calculation when hadronization effects are included.

2 data tables

Inclusive differential jet cross section for R=0.2 and R=0.4.

Ratio of the inclusive differential jet cross section for R=0.2 and R=0.4.


Measurement of the differential cross sections for isolated direct photon pair production in $p \bar p$ collisions at $\sqrt{s} = 1.96$ TeV

The D0 collaboration Abazov, V.M. ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 725 (2013) 6-14, 2013.
Inspire Record 1215307 DOI 10.17182/hepdata.60556

We present measurements of direct photon pair production cross sections using 8.5 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron $p \bar p$ collider. The results are presented as differential distributions of the photon pair invariant mass $d\sigma/dM_{\gamma \gamma}$, pair transverse momentum $d \sigma /dp^{\gamma \gamma}_T$, azimuthal angle between the photons $d\sigma/d\Delta \phi_{\gamma \gamma}$, and polar scattering angle in the Collins-Soper frame $d\sigma /d|\cos \theta^*|$. Measurements are performed for isolated photons with transverse momenta $p^{\gamma}_T>18 ~(17)$ GeV for the leading (next-to-leading) photon in $p_T$, pseudorapidities $|\eta^{\gamma}|<0.9$, and a separation in $\eta-\phi$ space $\Delta\mathcal R_{\gamma\gamma} > 0.4$. We present comparisons with the predictions from Monte Carlo event generators {\sc diphox} and {\sc resbos} implementing QCD calculations at next-to-leading order, $2\gamma${\sc nnlo} at next-to-next-to-leading order, and {\sc sherpa} using matrix elements with higher-order real emissions matched to parton shower.

10 data tables

The measured differential distribution in the two-photon mass;.

The measured differential distribution in the two-photon transverse momentum;.

The measured differential distribution in the azimuthal angular separation of the two photons;.

More…

Measurement of the ratio of differential cross sections {\sigma}(ppbar -> Z + b jet)/{\sigma}(ppbar -> Z + jet) in ppbar collisions at sqrt(s)=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 87 (2013) 092010, 2013.
Inspire Record 1210034 DOI 10.17182/hepdata.61314

We measure the ratio of cross sections, {\sigma}(ppbar -> Z + b jet)/{\sigma}(ppbar -> Z + jet), for associated production of a Z boson with at least one jet. The ratio is also measured as a function of the jet transverse momentum, jet pseudorapidity, Z boson transverse momentum, and the azimuthal angle between the Z boson and the closest jet for events with at least one b jet. These measurements use data collected by the D0 experiment in Run II of Fermilab's Tevatron ppbar Collider at a center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity of 9.7 fb$^{-1}$. The results are compared to predictions from next-to-leading order calculations and various Monte Carlo event generators.

4 data tables

The ratio of (BJET + Z0)/(JET + Z0) production as a function of the jet transverse momentum.

The ratio of (BJET + Z0)/(JET + Z0) production as a function of the Z0 transverse momentum.

The ratio of (BJET + Z0)/(JET + Z0) production as a function of the JET pseudorapidity.

More…

Event shapes and azimuthal correlations in Z + jets events in pp collisions at sqrt(s) =7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 722 (2013) 238-261, 2013.
Inspire Record 1209721 DOI 10.17182/hepdata.75374

Measurements of event shapes and azimuthal correlations are presented for events where a Z boson is produced in association with jets in proton-proton collisions. The data collected with the CMS detector at the CERN LHC at sqrt(s) = 7 TeV correspond to an integrated luminosity of 5.0 inverse femtobarns. The analysis provides a test of predictions from perturbative QCD for a process that represents a substantial background to many physics channels. Results are presented as a function of jet multiplicity, for inclusive Z boson production and for Z bosons with transverse momenta greater than 150 GeV, and compared to predictions from Monte Carlo event generators that include leading-order multiparton matrix-element (with up to four hard partons in the final state) and next-to-leading-order simulations of Z + 1-jet events. The experimental results are corrected for detector effects, and can be compared directly with other QCD models.

18 data tables

Normalized DPhi(Z, j1) distributions for Njets >= 1.

Normalized DPhi(Z, j1) distributions for Njets >= 2.

Normalized DPhi(Z, j1) distributions for Njets >= 3.

More…