A search is presented for non-resonant Higgs boson pair production, targeting the $bbZZ$, 4$V$ ($V$ = $W$ or $Z$), $VV\tau\tau$, 4$\tau$, $\gamma\gamma VV$ and $\gamma\gamma\tau\tau$ decay channels. Events are categorised based on the multiplicity of light charged leptons (electrons or muons), hadronically decaying tau leptons, and photons. The search is based on a data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb$^{-1}$. No evidence of the signal is found and the observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 17 (11) times the Standard Model predicted cross-section at 95% confidence level under the background-only hypothesis. The observed (expected) constraints on the $HHH$ coupling modifier, $\kappa_{\lambda}$, are determined to be $-6.2 < \kappa_{\lambda} < 11.6$ ($-4.5 < \kappa_{\lambda} < 9.6$) at 95% confidence level, assuming the Standard Model for the expected limits and that new physics would only affect $\kappa_{\lambda}$.
Number of ggF and VBF SM HH signal events satisfying the preselection requirements from the targeted HH decay modes and their acceptance into the different ML search channels.
Number of ggF and VBF SM HH signal events satisfying the preselection requirements from the targeted HH decay modes and their acceptance into the different $\gamma\gamma$+ML search channels.
Distribution of the BDT output score in the 4l+2b channel signal region.
Measurements of (anti)deuteron and (anti)$^3$He production in the rapidity range $ |y| < $ 0.5 as a function of the transverse momentum and event multiplicity in Xe$-$Xe collisions at a center-of-mass energy per nucleon$-$nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.44 TeV are presented. The coalescence parameters $B_2$ and $B_3$ are measured as a function of the transverse momentum per nucleon. The ratios between (anti)deuteron and (anti)$^3$He yields and those of (anti)protons and pions are reported as a function of the mean charged-particle multiplicity density, and compared with two implementations of the statistical hadronization model and with coalescence predictions. The elliptic flow of (anti)deuterons is measured for the first time in Xe$-$Xe collisions and shows features similar to those already observed in Pb$-$Pb collisions, i.e., the mass ordering at low transverse momentum and the meson$-$baryon grouping at intermediate transverse momentum. The production of nuclei is particularly sensitive to the chemical freeze-out temperature of the system created in the collision, which is extracted from a grand-canonical-ensemble-based thermal fit, performed for the first time including light nuclei along with light-flavor hadrons in Xe$-$Xe collisions. The extracted chemical freeze-out temperature $T_{\rm chem}$ = (154.2 $\pm$ 1.1) MeV in Xe$-$Xe collisions is similar to that observed in Pb$-$Pb collisions and close to the crossover temperature predicted by lattice quantum chromodynamics calculations.
Transverse momentum spectra of 3He nuclei measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (right panel).
Transverse momentum spectra of deuterons measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (left panel). Centrality class 0 to 10 percent.
Transverse momentum spectra of deuterons measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (left panel). Centrality class 10 to 20 percent.
The first measurement of $_{\Lambda}^{3}\mathrm{H}$ and $^3_ {\overline{\Lambda}}\overline{\mathrm{H}}$ differential production with respect to transverse momentum and centrality in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$~TeV is presented. The $_{\Lambda}^{3}\mathrm{H}$ has been reconstructed via its two-charged-body decay channel, i.e., $_{\Lambda}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + \pi^{-}$. A Blast-Wave model fit of the $p_{\rm T}$-differential spectra of all nuclear species measured by the ALICE collaboration suggests that the $_{\Lambda}^{3}\mathrm{H}$ kinetic freeze-out surface is consistent with that of other nuclei. The ratio between the integrated yields of $_{\Lambda}^{3}\mathrm{H}$ and $^3\mathrm{He}$ is compared to predictions from the statistical hadronisation model and the coalescence model, with the latter being favoured by the presented measurements.
Transverse momentum distributions of (anti)hypertriton in 0-10% V0M centrality class
Transverse momentum distributions of (anti)hypertriton in 10-30% V0M centrality class
Transverse momentum distributions of (anti)hypertriton in 30-50% V0M centrality class
$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.
Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
This Letter presents the first measurement of event-by-event fluctuations of the net number (difference between the particle and antiparticle multiplicities) of multistrange hadrons $\Xi^-$ and $\overline{\Xi}^+$ and its correlation with the net-kaon number using the data collected by the ALICE Collaboration in pp, p$-$Pb, and Pb$-$Pb collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\mathrm{NN}}}=5.02\ \mathrm{TeV}$. The statistical hadronization model with a correlation over three units of rapidity between hadrons having the same and opposite strangeness content successfully describes the results. On the other hand, string-fragmentation models that mainly correlate strange hadrons with opposite strange quark content over a small rapidity range fail to describe the data.
Pearson correlation coefficient between the net-$\Xi$ number and net-K number, $\rho_{\Delta\Xi\Delta\mathrm{K}}$, in pp collisions at $\sqrt{s} = 5.02$ TeV
Pearson correlation coefficient between the net-$\Xi$ number and net-K number, $\rho_{\Delta\Xi\Delta\mathrm{K}}$, in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV
Pearson correlation coefficient between the net-$\Xi$ number and net-K number, $\rho_{\Delta\Xi\Delta\mathrm{K}}$, in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV
First measurements of hadron(h)$-\Lambda$ azimuthal angular correlations in p$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV using the ALICE detector at the Large Hadron Collider are presented. These correlations are used to separate the production of associated $\Lambda$ baryons into three different kinematic regions, namely those produced in the direction of the trigger particle (near-side), those produced in the opposite direction (away-side), and those whose production is uncorrelated with the jet axis (underlying event). The per-trigger associated $\Lambda$ yields in these regions are extracted, along with the near- and away-side azimuthal peak widths, and the results are studied as a function of associated particle $p_{\rm T}$ and event multiplicity. Comparisons with the DPMJET event generator and previous measurements of the $\phi(1020)$ meson are also made. The final results indicate that strangeness production in the highest multiplicity p$-$Pb collisions is enhanced relative to low multiplicity collisions in both the jet-like regions and the underlying event. The production of $\Lambda$ relative to charged hadrons is also enhanced in the underlying event when compared to the jet-like regions. Additionally, the results hint that strange quark production in the away-side of the jet is modified by soft interactions with the underlying event.
Azimuthal distribution of the per-trigger h-$\Lambda$ yield with trigger transverse momentum between 4 and 8 GeV/c and associated transverse momentum between 1.5 and 2.5 GeV/c for 0-20% multiplicity class p-Pb collisions
Azimuthal distribution of the per-trigger h-$\Lambda$ yield with trigger transverse momentum between 4 and 8 GeV/c and associated transverse momentum between 1.5 and 2.5 GeV/c for 20-50% multiplicity class p-Pb collisions
Azimuthal distribution of the per-trigger h-$\Lambda$ yield with trigger transverse momentum between 4 and 8 GeV/c and associated transverse momentum between 1.5 and 2.5 GeV/c for 50-80% multiplicity class p-Pb collisions
Entanglement is an intrinsic property of quantum mechanics and is predicted to be exhibited in the particles produced at the Large Hadron Collider. A measurement of the extent of entanglement in top quark-antiquark ($\mathrm{t\bar{t}}$) events produced in proton-proton collisions at a center-of-mass energy of 13 TeV is performed with the data recorded by the CMS experiment at the CERN LHC in 2016, and corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The events are selected based on the presence of two leptons with opposite charges and high transverse momentum. An entanglement-sensitive observable $D$ is derived from the top quark spin-dependent parts of the $\mathrm{t\bar{t}}$ production density matrix and measured in the region of the $\mathrm{t\bar{t}}$ production threshold. Values of $D$$\lt$$-$1/3 are evidence of entanglement and $D$ is observed (expected) to be $-$0.480 $^{+0.026}_{-0.029}$$(-$0.467 $^{+0.026}_{-0.029})$ at the parton level. With an observed significance of 5.1 standard deviations with respect to the non-entangled hypothesis, this provides observation of quantum mechanical entanglement within $\mathrm{t\bar{t}}$ pairs in this phase space. This measurement provides a new probe of quantum mechanics at the highest energies ever produced.
Expected and observed values for the entanglement proxy D in the parton-level phase space of $m(\mathrm{t\bar{t}}) < 400$ and $\beta_z(\mathrm{t\bar{t}}) < 0.9$ when including contributions from the ground state of toponium, $\eta_{\mathrm{t}}$. The first uncertainty is the statistical uncertainty whereas the second uncertainty is the systematic uncertainty.
Expected and observed values for the entanglement proxy D in the parton-level phase space of $m(\mathrm{t\bar{t}}) < 400$ and $\beta_z(\mathrm{t\bar{t}}) < 0.9$ when excluding contributions from the ground state of toponium, $\eta_{\mathrm{t}}$. The first uncertainty is the statistical uncertainty whereas the second uncertainty is the systematic uncertainty.
Expected values from various Monte Carlo predictions for the entanglement proxy D in the parton-level phase space of $m(\mathrm{t\bar{t}}) < 400$ and $\beta_z(\mathrm{t\bar{t}}) < 0.9$ both when excluding and including contributions from the ground state of toponium, $\eta_{\mathrm{t}}$. The first uncertainty is the Monte Carlo statistical uncertainty whereas the second uncertainty is the systematic uncertainty which includes PDF and scale uncertainties.
Measurements at $\sqrt{s}$ = 13.6 TeV of the opposite-sign W boson pair production cross section in proton-proton collisions are presented. The data used in this study were collected with the CMS detector at the CERN LHC in 2022, and correspond to an integrated luminosity of 34.8 fb$^{-1}$. Events are selected by requiring one electron and one muon of opposite charge. A maximum likelihood fit is performed on signal- and background-enriched data categories defined by the flavour and charge of the leptons, the number of jets, and number of jets originating from b quarks. An inclusive W$^+$W$^-$ production cross section of 125.7 $\pm$ 5.6 pb is measured, in agreement with standard model predictions. Cross sections are also reported in a fiducial region close to that of the detector acceptance, both inclusively and differentially, as a function of the jet multiplicity in the event. For first time in proton-proton collisions, WW events with at least two reconstructed jets are studied and compared with recent theoretical predictions.
Summary of inclusive cross section.
Summary of inclusive cross section.
Relative systematic uncertainties in the total cross section measurement.
A search for a new charged particle X with mass between 0.3 and 2.0 TeV decaying to a W boson and a photon is presented, using proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb$^{-1}$. Particle X has electric charge $\pm$ 1 and is assumed to have spin 0. The search is performed using the electron and muon decays of the W boson. No significant excess above the predicted background is observed. The upper limit at 95% confidence level on the product of the production cross section of the X and its branching fraction to a W boson and a photon is found to be 94 (137) fb for a 0.3 TeV resonance and 0.75 (0.81) fb for a 2.0 TeV resonance, for an X width-to-mass ratio of 0.01% (5%). This search presents the most stringent constraints to date on the existence of such resonances across the probed mass range. A statistical combination with an earlier study based on the hadronic decay mode of the W boson is also performed, and the upper limit at 95% confidence level for a 2.0 TeV resonance is reduced to 0.50 (0.63) fb for an X width-to-mass ratio of 0.01% (5%).
The red, blue, and orange curves are the product of detector acceptance and analysis selections efficiency for different particle mass assumptions---300, 1000, and 2000 GeV, respectively---to pass sequential requirements, for the electron channel.
The red, blue, and orange curves are the product of detector acceptance and analysis selections efficiency for different particle mass assumptions---300, 1000, and 2000 GeV, respectively---to pass sequential requirements, for the muon channel.
The product of detector acceptance and analysis selection efficiency in the electron channel as functions of the particle X mass. Three analysis requirements are applied consecutively: event reconstruction, HLT, and final signal selection. The product of detector acceptance and analysis selection efficiencies are shown at each stage in red, blue, and orange, respectively.
This Letter presents results from a combination of searches for Higgs boson pair production using 126$-$140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. At 95% confidence level (CL), the upper limit on the production rate is 2.9 times the standard model (SM) prediction, with an expected limit of 2.4 assuming no Higgs boson pair production. Constraints on the Higgs boson self-coupling modifier $\kappa_{\lambda}=\lambda_{HHH}/\lambda_{HHH}^\mathrm{SM}$, and the quartic $HHVV$ coupling modifier $\kappa_{2V}=g_{HHVV}/g_{HHVV}^\mathrm{SM}$, are derived individually, fixing the other parameter to its SM value. The observed 95% CL intervals are $-1.2 < \kappa_{\lambda} < 7.2$ and $0.6 < \kappa_{2V} < 1.5$, respectively, while the expected intervals are $-1.6 < \kappa_{\lambda} < 7.2$ and $0.4 < \kappa_{2V} < 1.6$ in the SM case. Constraints obtained for several interaction parameters within Higgs effective field theory are the strongest to date, offering insights into potential deviations from SM predictions.
Observed and expected 95% CL upper limits on the signal strength for inclusive ggF HH and VBF HH production from the bb̄τ<sup>+</sup>τ<sup>-</sup>, bb̄γγ, bb̄bb̄, multilepton and bb̄ℓℓ+E<sub>T</sub><sup>miss</sup> decay channels, and their statistical combination. The predicted SM cross-section assumes m<sub>H</sub> = 125 GeV. The expected limit, along with its associated ±1σ and ±2σ bands, is calculated for the assumption of no HH production and with all NPs profiled to the observed data.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}b\bar{b}$.
Expected value of the test statistic (-2ln$\Lambda$), as a function of the $\kappa_\lambda$ parameter for $b\bar{b}\tau\tau$.