Date

Search for resonant leptoquark production via lepton-jet signatures in $pp$ collisions at $\sqrt{s} = 13$ TeV and $\sqrt{s} = 13.6$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2025) 180, 2025.
Inspire Record 2943627 DOI 10.17182/hepdata.166328

This paper presents a search for physics beyond the Standard Model targeting a heavy resonance visible in the invariant mass of the lepton-jet system. The analysis focuses on final states with a high-energy lepton and jet, and is optimised for the resonant production of leptoquarks-a novel production mode mediated by the lepton content of the proton originating from quantum fluctuations. Four distinct and orthogonal final states are considered: $e$+light jet, $μ$+light jet, $e$+$b$-jet, and $μ$+$b$-jet, constituting the first search at the Large Hadron Collider for resonantly produced leptoquarks with couplings to electrons and muons. Events with an additional same-flavour lepton, as expected from higher-order diagrams in the signal process, are also included in each channel. The search uses proton-proton collision data from the full Run 2, corresponding to an integrated luminosity of 140 fb$^{-1}$ at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, and from a part of Run 3 (2022-2023), corresponding to 55 fb$^{-1}$ at $\sqrt{s} = 13.6$ TeV. No significant excess over Standard Model predictions is observed. The results are interpreted as exclusion limits on scalar leptoquark ($\tilde{S}_1$) production, substantially improving upon previous ATLAS constraints from leptoquark pair production for large coupling values. The excluded $\tilde{S}_1$ mass ranges depend on the coupling strength, reaching up to 3.4 TeV for quark-lepton couplings $y_{de} = 1.0$, and up to 4.3 TeV, 3.1 TeV, and 2.8 TeV for $y_{sμ}$, $y_{be}$, and $y_{bμ}$ couplings set to 3.5, respectively.

64 data tables

Data (dots) and post-fit SM distribution (histograms) of m<sub>&#8467;j</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run&nbsp;2 and Run&nbsp;3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S&#771;<sub>1</sub> (m, y<sub>de</sub>) = (2.0&nbsp;TeV, 1.0) and S&#771;<sub>1</sub> (m, y<sub>de</sub>) = (3.0&nbsp;TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin

Data (dots) and post-fit SM distribution (histograms) of m<sub>&#8467;j</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run&nbsp;2 and Run&nbsp;3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S&#771;<sub>1</sub> (m, y<sub>de</sub>) = (2.0&nbsp;TeV, 1.0) and S&#771;<sub>1</sub> (m, y<sub>de</sub>) = (3.0&nbsp;TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin

Data (dots) and post-fit SM distribution (histograms) of m<sub>&#8467;j</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run&nbsp;2 and Run&nbsp;3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S&#771;<sub>1</sub> (m, y<sub>de</sub>) = (2.0&nbsp;TeV, 1.0) and S&#771;<sub>1</sub> (m, y<sub>de</sub>) = (3.0&nbsp;TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin

More…

Measurement of the top-quark pole mass in dileptonic $t\bar{t}+ 1\text{-jet}$ events at $\sqrt{s}=13$ TeV with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2025) 023, 2025.
Inspire Record 2942410 DOI 10.17182/hepdata.159628

A measurement of the top-quark pole mass $m_{t}^\text{pole}$ is presented in $t\bar{t}$ events with an additional jet, $t\bar{t}+1\text{-jet}$, produced in $pp$ collisions at $\sqrt{s}=13$ TeV. The data sample, recorded with the ATLAS experiment during Run 2 of the LHC, corresponds to an integrated luminosity of $140~\text{fb}^{-1}$. Events with one electron and one muon of opposite electric charge in the final state are selected to measure the $t\bar{t}+1\text{-jet}$ differential cross-section as a function of the inverse of the invariant mass of the $t\bar{t}+1\text{-jet}$ system. Iterative Bayesian Unfolding is used to correct the data to enable comparison with fixed-order calculations at next-to-leading-order accuracy in the strong coupling. The process $pp \to t\bar{t}j$ ($2 \rightarrow 3$), where top quarks are taken as stable particles, and the process $pp \to b\bar{b}l^+νl^- \barν j$ ($2 \to 7$), which includes top-quark decays to the dilepton final state and off-shell effects, are considered. The top-quark mass is extracted using a $χ^2$ fit of the unfolded normalized differential cross-section distribution. The results obtained with the $2 \to 3$ and $2 \to 7$ calculations are compatible within theoretical uncertainties, providing an important consistency check. The more precise determination is obtained for the $2 \to 3 $ measurement: $m_{t}^\text{pole}=170.7\pm0.3~(\text{stat.})\pm1.4~(\text{syst.})~\pm 0.3~(\text{scale})~\pm 0.2~(\text{PDF}\oplusα_\text{S})~\text{GeV},$ which is in good agreement with other top-quark mass results.

16 data tables

Unfolded number of events in the 2-to-3measurement (not normalized). The parton level is defined with two stable top-quarks and a jet with $p_{T}>50$ GeV and $|\eta|<2.5$.

Covariance matrix for statistical effects of the measured number of events after unfolding, for the 2-to-3 measurement (not normalized)

Covariance matrix for statistical and systematic effects of the measured number of events after unfolding, for the 2-to-3 measurement (not normalized)

More…

Version 2
Search for the nonresonant and resonant production of a Higgs boson in association with an additional scalar boson in the $γγττ$ final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-22-012, 2025.
Inspire Record 2940190 DOI 10.17182/hepdata.158371

The results of a search for the production of two scalar bosons in final states with two photons and two tau leptons are presented. The search considers both nonresonant production of a Higgs boson pair, HH, and resonant production via a new boson X which decays either to HH or to H and a new scalar Y. The analysis uses up to 138 fb$^{-1}$ of proton-proton collision data, recorded between 2016 and 2018 by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV. No evidence for signal is found in the data. For the nonresonant production, the observed (expected) upper limit at 95% confidence level (CL) on the HH production cross section is set at 930 (740) fb, corresponding to 33 (26) times the standard model prediction. At 95% CL, HH production is observed (expected) to be excluded for values of $κ_λ$ outside the range between $-$12 ($-$9.4) and 17 (15). Observed (expected) upper limits at 95% CL for the XHH cross section are found to be within 160 to 2200 (200 to 1800) fb, depending on the mass of X. In the X $\to$ Y($γγ$)H($ττ$) search, the observed (expected) upper limits on the product of the production cross section and decay branching fractions vary between 0.059$-$1.2 fb (0.087$-$0.68 fb). For the X $\to$ Y($γγ$)H($ττ$) search the observed (expected) upper limits on the product of the production cross section and Y $to$ $γγ$ branching fraction vary between 0.69$-$15 fb (0.73$-$8.3 fb) in the low Y mass search, tightening constraints on the next-to-minimal supersymmetric standard model, and between 0.64$-$10 fb (0.70$-$7.6 fb) in the high Y mass search.

13 data tables

Observed and expected 95% CL upper limits on the nonresonant $\mathrm{HH}$ production cross section, $\sigma(\mathrm{pp} \to \mathrm{HH})$, as a function of the Higgs boson self-coupling strength modifier $\kappa_\lambda$. All Higgs boson couplings other than $\lambda$ are assumed to have the values predicted in the SM.

Observed and expected 95% CL upper limits on the nonresonant $\mathrm{HH}$ production cross section, $\sigma(\mathrm{pp} \to \mathrm{HH})$, for thirteen different BSM benchmark scenarios from [arXiv:1507.02245, arXiv:1806.05162] which consider different values of the couplings, $\kappa_\lambda$, $\kappa_t$, $c_{2g}$, $c_g$, and $c_2$ (defined in Table 1).

Observed and expected 95% CL upper limits on the cross section for the resonant production of a new spin-0 particle $\mathrm{X}^{(0)}$ which decays to Higgs boson pairs, $\sigma(\mathrm{pp} \to \mathrm{X}^{(0)} \to \mathrm{HH})$, given for different values of $m_\mathrm{X}$ in the range 260-1000 GeV. Theoretical predictions for this cross section assuming that $\mathrm{X}^{(0)}$ is a radion particle with $\Lambda_R = 2$ TeV and 3 TeV are also provided [arXiv:1404.0102].

More…

Search for single production of vector-like quarks decaying into $W(\ellν)b$ in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 12 (2025) 012, 2025.
Inspire Record 2936806 DOI 10.17182/hepdata.161563

A search for single production of a vector-like quark $Q$, which could be either a singlet $T$, with charge $\tfrac23$, or a $Y$ from a $(T,B,Y)$ triplet, with charge $-\tfrac43$, is performed using data from proton-proton collisions at a centre-of-mass energy of 13 TeV. The data correspond to the full integrated luminosity of 140 fb$^{-1}$ recorded with the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis targets $Q \to Wb$ decays where the $W$ boson decays leptonically. The data are found to be consistent with the expected Standard Model background, so upper limits are set on the cross-section times branching ratio, and on the coupling of the $Q$ to the Standard Model sector for these two benchmark models. Effects of interference with the Standard Model background are taken into account. For the singlet $T$, the 95% confidence level limit on the coupling strength $κ$ ranges between 0.22 and 0.52 for masses from 1150 to 2300 GeV. For the $(T,B,Y)$ triplet, the limits on $κ$ vary from 0.14 to 0.46 for masses from 1150 to 2600 GeV.

19 data tables

Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a&ndash;c) SRs, (d&ndash;f) W+jets CRs and (g&ndash;i) tt&#772; CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV

Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a&ndash;c) SRs, (d&ndash;f) W+jets CRs and (g&ndash;i) tt&#772; CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV

Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a&ndash;c) SRs, (d&ndash;f) W+jets CRs and (g&ndash;i) tt&#772; CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV

More…

Measurements of differential cross-sections of $WbWb$ production in the dilepton channel in $pp$ collisions at $\sqrt{s}$ = 13 TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-094, 2025.
Inspire Record 2935747 DOI 10.17182/hepdata.159379

At the Large Hadron Collider, the $WbWb$ final state is expected to be dominated by $t\bar{t}$ production with a contribution from single-top processes. Differential cross-sections for $WbWb$ production in the dilepton decay channel are measured at the particle level as a function of various kinematic variables. The analysis is based on data from proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, recorded by the ATLAS detector at the Large Hadron Collider over the period from 2015 to 2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. Measurements are performed within the fiducial phase-space defined by the presence of two $b$-jets and one electron and one muon of opposite charges. The differential cross-sections are corrected for detector effects and unfolded to the particle level. Results are compared with predictions from Monte Carlo event generators at next-to-leading order in perturbative quantum chromodynamics. These measurements provide valuable constraints on the modelling of $WbWb$ production and the interference between doubly resonant and singly resonant $WbWb$ production.

186 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Fiducial phase space definitions:</b><br/> <i>Exclusive:</i> <ul> <li> NLEP = 2, EMU, PT &gt; 28 GeV, ABS ETA &lt; 2.5 <li> NJETS &gt;= 2, PT &gt; 25 GeV, ABS ETA &lt; 2.5 <li> NBJETS = 2 </ul><br/> <i>Inclusive:</i> <ul> <li> NLEP = 2, EMU, PT &gt; 28 GeV, ABS ETA &lt; 2.5 <li> NJETS &gt;= 2, PT &gt; 25 GeV, ABS ETA &lt; 2.5 <li> NBJETS &gt;= 2 </ul><br/> <b>Measurements:</b><br/> <i>Exclusive:</i><br/> Spectra: <ul> <li>DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 1">Table 1</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 4">Table 4</a> ) <li>SIG (<a href="159379?table=Table 7">Table 7</a> ) </ul><br/> Data statistical covariances: <ul> <li>DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 2">Table 2</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 5">Table 5</a> ) <li>SIG (<a href="159379?table=Table 8">Table 8</a> ) </ul><br/> MC statistical covariances: <ul> <li>DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 3">Table 3</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (<a href="159379?table=Table 6">Table 6</a> ) <li>SIG (<a href="159379?table=Table 9">Table 9</a> ) </ul><br/> <b>Particle level:</b><br/> <i>Inclusive:</i><br/> Spectra: <ul> <li>DSIG/Dn_JETS (<a href="159379?table=Table 10">Table 10</a> ) <li>1/SIG*DSIG/Dn_JETS (<a href="159379?table=Table 13">Table 13</a> ) <li>DSIG/DM_BBLL (<a href="159379?table=Table 16">Table 16</a> ) <li>1/SIG*DSIG/DM_BBLL (<a href="159379?table=Table 19">Table 19</a> ) <li>DSIG/DMT_BB4L (<a href="159379?table=Table 22">Table 22</a> ) <li>1/SIG*DSIG/DMT_BB4L (<a href="159379?table=Table 25">Table 25</a> ) <li>DSIG/DPT_BB (<a href="159379?table=Table 28">Table 28</a> ) <li>1/SIG*DSIG/DPT_BB (<a href="159379?table=Table 31">Table 31</a> ) <li>DSIG/DPT_J1 (<a href="159379?table=Table 34">Table 34</a> ) <li>1/SIG*DSIG/DPT_J1 (<a href="159379?table=Table 37">Table 37</a> ) <li>DSIG/DPT_J2 (<a href="159379?table=Table 40">Table 40</a> ) <li>1/SIG*DSIG/DPT_J2 (<a href="159379?table=Table 43">Table 43</a> ) <li>DSIG/DPT_L1 (<a href="159379?table=Table 46">Table 46</a> ) <li>1/SIG*DSIG/DPT_L1 (<a href="159379?table=Table 49">Table 49</a> ) <li>DSIG/DPT_L2 (<a href="159379?table=Table 52">Table 52</a> ) <li>1/SIG*DSIG/DPT_L2 (<a href="159379?table=Table 55">Table 55</a> ) <li>DSIG/DPT_BB4L (<a href="159379?table=Table 58">Table 58</a> ) <li>1/SIG*DSIG/DPT_BB4L (<a href="159379?table=Table 61">Table 61</a> ) <li>DSIG/DPT_BBLL (<a href="159379?table=Table 64">Table 64</a> ) <li>1/SIG*DSIG/DPT_BBLL (<a href="159379?table=Table 67">Table 67</a> ) <li>SIG (<a href="159379?table=Table 70">Table 70</a> ) </ul><br/> Data statistical covariances: <ul> <li>DSIG/Dn_JETS (<a href="159379?table=Table 11">Table 11</a> ) <li>1/SIG*DSIG/Dn_JETS (<a href="159379?table=Table 14">Table 14</a> ) <li>DSIG/DM_BBLL (<a href="159379?table=Table 17">Table 17</a> ) <li>1/SIG*DSIG/DM_BBLL (<a href="159379?table=Table 20">Table 20</a> ) <li>DSIG/DMT_BB4L (<a href="159379?table=Table 23">Table 23</a> ) <li>1/SIG*DSIG/DMT_BB4L (<a href="159379?table=Table 26">Table 26</a> ) <li>DSIG/DPT_BB (<a href="159379?table=Table 29">Table 29</a> ) <li>1/SIG*DSIG/DPT_BB (<a href="159379?table=Table 32">Table 32</a> ) <li>DSIG/DPT_J1 (<a href="159379?table=Table 35">Table 35</a> ) <li>1/SIG*DSIG/DPT_J1 (<a href="159379?table=Table 38">Table 38</a> ) <li>DSIG/DPT_J2 (<a href="159379?table=Table 41">Table 41</a> ) <li>1/SIG*DSIG/DPT_J2 (<a href="159379?table=Table 44">Table 44</a> ) <li>DSIG/DPT_L1 (<a href="159379?table=Table 47">Table 47</a> ) <li>1/SIG*DSIG/DPT_L1 (<a href="159379?table=Table 50">Table 50</a> ) <li>DSIG/DPT_L2 (<a href="159379?table=Table 53">Table 53</a> ) <li>1/SIG*DSIG/DPT_L2 (<a href="159379?table=Table 56">Table 56</a> ) <li>DSIG/DPT_BB4L (<a href="159379?table=Table 59">Table 59</a> ) <li>1/SIG*DSIG/DPT_BB4L (<a href="159379?table=Table 62">Table 62</a> ) <li>DSIG/DPT_BBLL (<a href="159379?table=Table 65">Table 65</a> ) <li>1/SIG*DSIG/DPT_BBLL (<a href="159379?table=Table 68">Table 68</a> ) <li>SIG (<a href="159379?table=Table 71">Table 71</a> ) </ul><br/> MC statistical covariances: <ul> <li>DSIG/Dn_JETS (<a href="159379?table=Table 12">Table 12</a> ) <li>1/SIG*DSIG/Dn_JETS (<a href="159379?table=Table 15">Table 15</a> ) <li>DSIG/DM_BBLL (<a href="159379?table=Table 18">Table 18</a> ) <li>1/SIG*DSIG/DM_BBLL (<a href="159379?table=Table 21">Table 21</a> ) <li>DSIG/DMT_BB4L (<a href="159379?table=Table 24">Table 24</a> ) <li>1/SIG*DSIG/DMT_BB4L (<a href="159379?table=Table 27">Table 27</a> ) <li>DSIG/DPT_BB (<a href="159379?table=Table 30">Table 30</a> ) <li>1/SIG*DSIG/DPT_BB (<a href="159379?table=Table 33">Table 33</a> ) <li>DSIG/DPT_J1 (<a href="159379?table=Table 36">Table 36</a> ) <li>1/SIG*DSIG/DPT_J1 (<a href="159379?table=Table 39">Table 39</a> ) <li>DSIG/DPT_J2 (<a href="159379?table=Table 42">Table 42</a> ) <li>1/SIG*DSIG/DPT_J2 (<a href="159379?table=Table 45">Table 45</a> ) <li>DSIG/DPT_L1 (<a href="159379?table=Table 48">Table 48</a> ) <li>1/SIG*DSIG/DPT_L1 (<a href="159379?table=Table 51">Table 51</a> ) <li>DSIG/DPT_L2 (<a href="159379?table=Table 54">Table 54</a> ) <li>1/SIG*DSIG/DPT_L2 (<a href="159379?table=Table 57">Table 57</a> ) <li>DSIG/DPT_BB4L (<a href="159379?table=Table 60">Table 60</a> ) <li>1/SIG*DSIG/DPT_BB4L (<a href="159379?table=Table 63">Table 63</a> ) <li>DSIG/DPT_BBLL (<a href="159379?table=Table 66">Table 66</a> ) <li>1/SIG*DSIG/DPT_BBLL (<a href="159379?table=Table 69">Table 69</a> ) <li>SIG (<a href="159379?table=Table 72">Table 72</a> ) </ul><br/> Inter-spectra data statistical covariances: <ul> <li>SIG (exclusive) versus DSIG/DM_BL_MINIMAX (exclusive) (<a href="159379?table=Table 73">Table 73</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 74">Table 74</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 75">Table 75</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 76">Table 76</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 77">Table 77</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 78">Table 78</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 79">Table 79</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 80">Table 80</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 81">Table 81</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 82">Table 82</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 83">Table 83</a> ) <li>DSIG/DM_BL_MINIMAX (exclusive) versus SIG (inclusive) (<a href="159379?table=Table 84">Table 84</a> ) <li>SIG (exclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 85">Table 85</a> ) <li>SIG (exclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 86">Table 86</a> ) <li>SIG (exclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 87">Table 87</a> ) <li>SIG (exclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 88">Table 88</a> ) <li>SIG (exclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 89">Table 89</a> ) <li>SIG (exclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 90">Table 90</a> ) <li>SIG (exclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 91">Table 91</a> ) <li>SIG (exclusive) versus DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 92">Table 92</a> ) <li>SIG (exclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 93">Table 93</a> ) <li>SIG (exclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 94">Table 94</a> ) <li>SIG (exclusive) versus SIG (inclusive) (<a href="159379?table=Table 95">Table 95</a> ) <li>DSIG/DM_BBLL (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 96">Table 96</a> ) <li>DSIG/DM_BBLL (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 97">Table 97</a> ) <li>DSIG/DM_BBLL (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 98">Table 98</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 99">Table 99</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 100">Table 100</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 101">Table 101</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 102">Table 102</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 103">Table 103</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 104">Table 104</a> ) <li>SIG (inclusive) versus DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 105">Table 105</a> ) <li>DSIG/DMT_BB4L (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 106">Table 106</a> ) <li>DSIG/DPT_BB (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 107">Table 107</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 108">Table 108</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 109">Table 109</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 110">Table 110</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 111">Table 111</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 112">Table 112</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 113">Table 113</a> ) <li>DSIG/DPT_J2 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 114">Table 114</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 115">Table 115</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 116">Table 116</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 117">Table 117</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 118">Table 118</a> ) <li>DSIG/DPT_L1 (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 119">Table 119</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 120">Table 120</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 121">Table 121</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 122">Table 122</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 123">Table 123</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 124">Table 124</a> ) <li>DSIG/DPT_L2 (inclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 125">Table 125</a> ) <li>DSIG/Dn_JETS (inclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 126">Table 126</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 127">Table 127</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 128">Table 128</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 129">Table 129</a> ) <li>DSIG/DPT_BBLL (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 130">Table 130</a> ) <li>DSIG/DPT_J1 (inclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 131">Table 131</a> ) <li>SIG (inclusive) versus DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 132">Table 132</a> ) <li>SIG (inclusive) versus DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 133">Table 133</a> ) <li>SIG (inclusive) versus DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 134">Table 134</a> ) <li>SIG (inclusive) versus DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 135">Table 135</a> ) <li>SIG (inclusive) versus DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 136">Table 136</a> ) <li>SIG (inclusive) versus DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 137">Table 137</a> ) <li>SIG (inclusive) versus DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 138">Table 138</a> ) <li>SIG (inclusive) versus DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 139">Table 139</a> ) <li>SIG (inclusive) versus DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 140">Table 140</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 141">Table 141</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 142">Table 142</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 143">Table 143</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 144">Table 144</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 145">Table 145</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 146">Table 146</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 147">Table 147</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_L2 (inclusive) (<a href="159379?table=Table 148">Table 148</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 149">Table 149</a> ) <li>1/SIG*DSIG/DM_BL_MINIMAX (exclusive) versus 1/SIG*DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 150">Table 150</a> ) <li>1/SIG*DSIG/DM_BBLL (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 151">Table 151</a> ) <li>1/SIG*DSIG/DM_BBLL (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 152">Table 152</a> ) <li>1/SIG*DSIG/DM_BBLL (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 153">Table 153</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 154">Table 154</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 155">Table 155</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 156">Table 156</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_L1 (inclusive) (<a href="159379?table=Table 157">Table 157</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 158">Table 158</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 159">Table 159</a> ) <li>1/SIG*DSIG/DMT_BB4L (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 160">Table 160</a> ) <li>1/SIG*DSIG/DPT_BB (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 161">Table 161</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 162">Table 162</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 163">Table 163</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 164">Table 164</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 165">Table 165</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 166">Table 166</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 167">Table 167</a> ) <li>1/SIG*DSIG/DPT_J2 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 168">Table 168</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 169">Table 169</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 170">Table 170</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 171">Table 171</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 172">Table 172</a> ) <li>1/SIG*DSIG/DPT_L1 (inclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 173">Table 173</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 174">Table 174</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 175">Table 175</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 176">Table 176</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 177">Table 177</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_J1 (inclusive) (<a href="159379?table=Table 178">Table 178</a> ) <li>1/SIG*DSIG/DPT_L2 (inclusive) versus 1/SIG*DSIG/DPT_J2 (inclusive) (<a href="159379?table=Table 179">Table 179</a> ) <li>1/SIG*DSIG/Dn_JETS (inclusive) versus 1/SIG*DSIG/DPT_BB4L (inclusive) (<a href="159379?table=Table 180">Table 180</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/Dn_JETS (inclusive) (<a href="159379?table=Table 181">Table 181</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/DM_BBLL (inclusive) (<a href="159379?table=Table 182">Table 182</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/DMT_BB4L (inclusive) (<a href="159379?table=Table 183">Table 183</a> ) <li>1/SIG*DSIG/DPT_BBLL (inclusive) versus 1/SIG*DSIG/DPT_BB (inclusive) (<a href="159379?table=Table 184">Table 184</a> ) <li>1/SIG*DSIG/DPT_J1 (inclusive) versus 1/SIG*DSIG/DPT_BBLL (inclusive) (<a href="159379?table=Table 185">Table 185</a> ) </ul>

Absolute differential cross-section as a function of $m^{bl}_{minimax}$ at particle level in the exclusive topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections. The covariance matrices are evaluated using pseudo-experiments for data and MC statistical uncertainties, and added to the individual covariance matrices for the remaining uncertainties, as described in the text. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.

Covariance matrix of the absolute differential cross-section as function of $m^{bl}_{minimax}$ at particle level in the exclusive topology, accounting for the data statistical uncertainties.

More…

Search for nonresonant new physics signals in high-mass dilepton events produced in association with b-tagged jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-EXO-23-010, 2025.
Inspire Record 2935112 DOI 10.17182/hepdata.156189

A search for nonresonant new physics phenomena in high-mass dilepton events produced in association with b-tagged jets is performed using proton-proton collision data collected in 2016$-$2018 by the CMS experiment at the CERN LHC, at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis considers two effective field theory models with dimension-six operators; involving four-fermion contact interactions between two leptons ($\ell\ell$, electrons or muons) and b or s quarks (bb$\ell\ell$ and bs$\ell\ell$). Two lepton flavor combinations (ee and $μμ$) are required and events are classified as having 0, 1, and $\geq$2 b-tagged jets in the final state. No significant excess is observed over the standard model backgrounds. Upper limits are set on the production cross section of the new physics signals. These translate into lower limits on the energy scale $Λ$ of 6.9 to 9.0 TeV in the bb$\ell\ell$ model, depending on model parameters, and on the ratio of energy scale and effective coupling, $Λ/g_*$, of 2.0 to 2.6 TeV in the bs$\ell\ell$ model. The latter represent the most stringent limits on this model to date. Lepton flavor universality is also tested by comparing the dielectron and dimuon mass spectra for different b-tagged jet multiplicities. No significant deviation from the standard model expectation of unity is observed.

27 data tables

Signal efficiencies with Full Run 2 dimuon channel for different bbll signal scenarios

Signal efficiencies with Full Run 2 dimuon channel for different bbll (destructive interference) signal scenarios

Signal efficiencies with Full Run 2 dimuon channel in 1b final state for different bbll signal scenarios

More…

Study of $\langle p_{\rm T} \rangle$ and its higher moments, and extraction of the speed of sound in Pb-Pb collisions with ALICE

The ALICE collaboration Abualrob, Ibrahim Jaser ; Acharya, Shreyasi ; Aglieri Rinella, Gianluca ; et al.
JHEP 11 (2025) 076, 2025.
Inspire Record 2933773 DOI 10.17182/hepdata.165515

Ultrarelativistic heavy-ion collisions produce a state of hot and dense strongly interacting QCD matter called quark--gluon plasma (QGP). On an event-by-event basis, the volume of the QGP in ultracentral collisions is mostly constant, while its total entropy can vary significantly due to quantum fluctuations, leading to variations in the temperature of the system. Exploiting this unique feature of ultracentral collisions allows for the interpretation of the correlation of the mean transverse momentum of produced charged hadrons and the number of charged hadrons as a measure for the speed of sound. It is determined by fitting the relative increase in transverse momentum with respect to the relative change in the average charged-particle density measured at midrapidity. This study reports the event-average transverse momentum of charged particles as well as the self-normalized variance, skewness, and kurtosis of the event-by-event transverse momentum distribution in ultracentral Pb-Pb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair using the ALICE detector. Different centrality estimators based on charged-particle multiplicity or the transverse energy of the event are used to select ultracentral collisions. By ensuring a pseudorapidity gap between the region used to define the centrality and the region used to perform the measurement, the influence of biases on the rise of the mean transverse momentum is tested. The measured values are found to strongly depend on the exploited centrality estimator. The variance shows a steep decrease towards ultracentral collisions, while the skewness variables show a maximum, followed by a fast decrease. These non-Gaussian features are understood in terms of the vanishing of the impact-parameter fluctuations contributing to the event-to-event transverse momentum distribution.

35 data tables

Average number of participating nucleons ($\langle N_{\mathrm{part}} \rangle$) as a function of centrality percentile in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimators based on $N_{\mathrm{ch}}$, ${N_{\mathrm{tracklets}}}$, and $E_{\mathrm{T}}$ within $|\eta|\leq 0.8$.

Average number of participating nucleons ($\langle N_{\mathrm{part}} \rangle$) as a function of centrality percentile in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimator based on $N_{\mathrm{ch}} \in$ $-3.7<\eta<-1.7$ and $2.8 < \eta <5.1$.

Normalized $p_{\mathrm{T}}$-spectrum ratio as a function as a function of centrality in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02~\mathrm{TeV}$. Data points are shown for centrality estimator based on $N_{\mathrm{ch}} \in$ $0.5 \leq |\eta|\leq 0.8$.

More…

Search for top squarks in final states with many light-flavor jets and 0, 1, or 2 charged leptons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-SUS-23-001, 2025.
Inspire Record 2933169 DOI 10.17182/hepdata.156817

Several new physics models including versions of supersymmetry (SUSY) characterized by $R$-parity violation (RPV) or with additional hidden sectors predict the production of events with top quarks, low missing transverse momentum, and many additional quarks or gluons. The results of a search for top squarks decaying to two top quarks and six additional light-flavor quarks or gluons are reported. The search employs a novel machine learning method for background estimation from control samples in data using decorrelated discriminators. The search is performed using events with 0, 1, or 2 electrons or muons in conjunction with at least six jets. No requirement is placed on the magnitude of the missing transverse momentum. The result is based on a sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to 138 fb$^{-1}$ of integrated luminosity collected with the CMS detector at the LHC in 2016$-$2018. The data are used to determine upper limits on the top squark pair production cross section in the frameworks of RPV and stealth SUSY. Models with top squark masses less than 700 (930) GeV are excluded at 95% confidence level for RPV (stealth) SUSY scenarios.

32 data tables

Cutflows and signal efficiencies for the RPV SUSY model in the $0\ell$ channel corresponding to two values of $m_{\tilde{t}}$.

Cutflows and signal efficiencies for the Stealth SYY SUSY model in the $0\ell$ channel corresponding to two values of $m_{\tilde{t}}$.

Cutflows and signal efficiencies for the RPV SUSY model in the $1\ell$ channel corresponding to two values of $m_{\tilde{t}}$.

More…

Determination of the spin and parity of all-charm tetraquarks

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
Nature 648 (2025) 58-63, 2025.
Inspire Record 2931712 DOI 10.17182/hepdata.158584

The traditional quark model accounts for the existence of baryons, such as protons and neutrons, which consist of three quarks, as well as mesons, composed of a quark-antiquark pair. Only recently has substantial evidence started to accumulate for exotic states composed of four or five quarks and antiquarks. The exact nature of their internal structure remains uncertain. This paper reports the first measurement of quantum numbers of the recently discovered family of three all-charm tetraquarks, using data collected by the CMS experiment at the Large Hadron Collider from 2016 to 2018. The angular analysis techniques developed for the discovery and characterization of the Higgs boson have been applied to the new exotic states. Here we show that the quantum numbers for parity $P$ and charge conjugation $C$ symmetries are found to be +1. The spin $J$ of these exotic states is consistent with 2$\hbar$, while 0$\hbar$ and 1$\hbar$ are excluded at 95% and 99% confidence level, respectively. The $J^{PC} = 2^{++}$ assignment implies particular configurations of constituent spins and orbital angular momenta, which constrain the possible internal structure of these tetraquarks.

4 data tables

Summary of statistical tests.

Results from hypothesis test for pairs of spin-parity models.

The $\mathrm{J}/\psi\mathrm{J}/\psi$ invariant mass distribution in data.

More…

Search for the rare decay D$^0$ $\to$ $\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
Phys.Rev.Lett. 135 (2025) 151803, 2025.
Inspire Record 2931458 DOI 10.17182/hepdata.158634

A search for the rare decay D$^0$$\to$$μ^+μ^-$ is reported using proton-proton collision events at $\sqrt{s}$ = 13.6 TeV collected by the CMS detector in 2022$-$2023, corresponding to an integrated luminosity of 64.5 fb$^{-1}$. This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses D$^0$ mesons obtained from D$^{*+}$$\to$ D$^0π^+$ decays. No significant excess is observed. A limit on the branching fraction of $\mathcal{B}$(D$^0$$\to$$μ^+μ^-$) $\lt$ 2.4 $\times$ 10$^{-9}$ at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector.

7 data tables

Summary of branching fraction.

Summary of systematic uncertainties for the D->mumu branching fraction measurement with their corresponding contributions in the signal channel.

The distributions of the dipion invariant mass $m_{\pi\pi}$ for the normalization channel in data.

More…