A search for strongly produced supersymmetric particles using signatures involving multiple energetic jets and either two isolated same-sign leptons ($e$ or $\mu$), or at least three isolated leptons, is presented. The analysis relies on the identification of $b$-jets and high missing transverse momentum to achieve good sensitivity. A data sample of proton--proton collisions at $\sqrt{s}= 13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to a total integrated luminosity of 36.1 fb$^{-1}$, is used for the search. No significant excess over the Standard Model prediction is observed. The results are interpreted in several simplified supersymmetric models featuring $R$-parity conservation or $R$-parity violation, extending the exclusion limits from previous searches. In models considering gluino pair production, gluino masses are excluded up to 1.87 TeV at 95% confidence level. When bottom squarks are pair-produced and decay to a chargino and a top quark, models with bottom squark masses below 700 GeV and light neutralinos are excluded at 95% confidence level. In addition, model-independent limits are set on a possible contribution of new phenomena to the signal region yields.
The result of a search for pair production of the supersymmetric partner of the Standard Model bottom quark ($\tilde{b}_1$) is reported. The search uses 3.2 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=$13 TeV collected by the ATLAS experiment at the Large Hadron Collider in 2015. Bottom squarks are searched for in events containing large missing transverse momentum and exactly two jets identified as originating from $b$-quarks. No excess above the expected Standard Model background yield is observed. Exclusion limits at 95% confidence level on the mass of the bottom squark are derived in phenomenological supersymmetric $R$-parity-conserving models in which the $\tilde{b}_1$ is the lightest squark and is assumed to decay exclusively via $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$, where $\tilde{\chi}_1^0$ is the lightest neutralino. The limits significantly extend previous results; bottom squark masses up to 800 (840) GeV are excluded for the $\tilde{\chi}_1^0$ mass below 360 (100) GeV whilst differences in mass above 100 GeV between the $\tilde{b}_1$ and the $\tilde{\chi}_1^0$ are excluded up to a $\tilde{b}_1$ mass of 500 GeV.
The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb$^{-1}$ of Pb+Pb data and 4.0 pb$^{-1}$ of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluate the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. No significant dependence of modifications on jet $p_{\mathrm{T}}$ and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.
A measurement of the cross-section for Z-boson production in the forward region of pp collisions at 8TeV centre-of-mass energy is presented. The measurement is based on a sample of $\rm Z\rightarrow e^+e^-$ decays reconstructed using the LHCb detector, corresponding to an integrated luminosity of 2.0fb$^{-1}$. The acceptance is defined by the requirements $2.0<\eta<4.5$ and $p_{\rm T}>20$GeV for the pseudorapidities and transverse momenta of the leptons. Their invariant mass is required to lie in the range 60--120GeV. The cross-section is determined to be $$ \sigma({\rm pp\to Z\to e^+e^-})=93.81\pm0.41({\rm stat})\pm1.48({\rm syst})\pm1.14({\rm lumi})\;{\rm pb}\,,$$ where the first uncertainty is statistical and the second reflects all systematic effects apart from that arising from the luminosity, which is given as the third uncertainty. Differential cross-sections are presented as functions of the Z-boson rapidity and of the angular variable $\phi^*$, which is related to the Z-boson transverse momentum.
The differential branching fraction with respect to the dimuon invariant mass squared, and the $C\!P$ asymmetry of the $B^\pm\to\pi^\pm\mu^+\mu^-$ decay are measured for the first time. The CKM matrix elements $|V_{td}|$ and $|V_{ts}|$, and the ratio $|V_{td}/V_{ts}|$ are determined. The analysis is performed using proton-proton collision data corresponding to an integrated luminosity of 3.0 fb$^{-1}$, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The total branching fraction and $C\!P$ asymmetry of $B^\pm\to\pi^\pm\mu^+\mu^-$ decays are measured to be \begin{eqnarray} \mathcal{B}(B^\pm\to\pi^\pm\mu^+\mu^-) &=& (1.83 \pm 0.24 \pm 0.05) \times 10^{-8}\,\,\,\mathrm{and} \nonumber\\ \mathcal{A}_{C\!P}(B^\pm\to\pi^\pm\mu^+\mu^-) &=& -0.11 \pm 0.12 \pm 0.01\,, \nonumber \end{eqnarray} where the first uncertainties are statistical and the second are systematic. These are the most precise measurements of these observables to date, and they are compatible with the predictions of the Standard Model.
The production of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV is studied with the \lhcb detector. Cross-section measurements are performed as a function of the transverse momentum $p_\mathrm{T}$ and the rapidity $y$ of the $J/\psi$ meson in the region $p_\mathrm{T}<14\mathrm{GeV}/c$ and $2.0<y<4.5$, for both prompt $J/\psi$ mesons and $J/\psi$ mesons from $b$-hadron decays. The production cross-sections integrated over the kinematic coverage are $15.03\pm 0.03\pm 0.94$ $\mu$b for prompt $J/\psi$ and $2.25\pm 0.01\pm 0.14$ $\mu$b for $J/\psi$ from $b$-hadron decays, assuming zero polarization of the $J/\psi$ meson. The first uncertainties are statistical and the second systematic. The cross-section reported for $J/\psi$ mesons from $b$-hadron decays is used to extrapolate to a total $b\bar{b}$ cross-section. The ratios of the cross-sections with respect to $\sqrt{s}=8$ TeV are also determined.
Neutral pion ($\pi^{0}$) and $\eta$ meson production cross sections were measured up to unprecedentedly high transverse momenta ($p_{\rm T}$) in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV. The mesons were reconstructed via their two-photon decay channel in the rapidity interval $-1.3< y <0.3$ in the ranges of $0.4<p_{\rm T}<200$ GeV/$c$ and $1.0<p_{\rm T}<50$ GeV/$c$, respectively. The respective nuclear modification factor ($R_{\rm pPb}$) is presented for $p_{\rm T}$ up to of 200 and 30 GeV/$c$, where the former was achieved by extending the $\pi^{0}$ measurement in pp collisions at $\sqrt{s}$ = 8 TeV using the merged cluster technique. The values of $R_{\rm pPb}$ are below unity for $p_{\rm T}<10$ GeV/$c$, while they are consistent with unity for $p_{\rm T}>10$ GeV/$c$, leaving essentially no room for final state energy loss. The new data provide strong constraints for nuclear parton distribution and fragmentation functions over a broad kinematic range and are compared to model predictions as well as previous results at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.
The $p_{\rm T}$-differential cross section of $\omega$ meson production in pp collisions at $\sqrt{s}= 13$ TeV at midrapidity ($|y|<0.5$) was measured with the ALICE detector at the LHC, covering an unprecedented transverse-momentum range of $1.6 <p_{\rm T}< 50$ GeV/$c$. The meson is reconstructed via the $\omega\rightarrow\pi^+\pi^-\pi^0$ decay channel. The results are compared with various theoretical calculations: PYTHIA8.2 with the Monash 2013 tune overestimates the data by up to 50%, whereas good agreement is observed with Next-to-Leading Order (NLO) calculations incorporating $\omega$ fragmentation using a broken SU(3) model. The $\omega/\pi^0$ ratio is presented and compared with theoretical calculations and the available measurements at lower collision energies. The presented data triples the $p_{\rm T}$ ranges of previously available measurements. A constant ratio of $C^{\omega/\pi^0}=0.578\pm0.006~\text{(stat.)}\pm 0.013~\text{(syst.)}$ is found above a transverse momentum of $4$ GeV/$c$, which is in agreement with previous findings at lower collision energies within the systematic and statistical uncertainties.
One of the key challenges for nuclear physics today is to understand from first principles the effective interaction between hadrons with different quark content. First successes have been achieved using techniques that solve the dynamics of quarks and gluons on discrete space-time lattices. Experimentally, the dynamics of the strong interaction have been studied by scattering hadrons off each other. Such scattering experiments are difficult or impossible for unstable hadrons and so high-quality measurements exist only for hadrons containing up and down quarks. Here we demonstrate that measuring correlations in the momentum space between hadron pairs produced in ultrarelativistic proton-proton collisions at the CERN Large Hadron Collider (LHC) provides a precise method with which to obtain the missing information on the interaction dynamics between any pair of unstable hadrons. Specifically, we discuss the case of the interaction of baryons containing strange quarks (hyperons). We demonstrate how, using precision measurements of p-omega baryon correlations, the effect of the strong interaction for this hadron-hadron pair can be studied with precision similar to, and compared with, predictions from lattice calculations. The large number of hyperons identified in proton-proton collisions at the LHC, together with an accurate modelling of the small (approximately one femtometre) inter-particle distance and exact predictions for the correlation functions, enables a detailed determination of the short-range part of the nucleon-hyperon interaction.
Fluctuation measurements are important sources of information on the mechanism of particle production at LHC energies. This article reports the first experimental results on third-order cumulants of the net-proton distributions in Pb$-$Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV recorded by the ALICE detector. The results on the second-order cumulants of net-proton distributions at $\sqrt{s_{\rm NN}} = 2.76$ and $5.02$ TeV are also discussed in view of effects due to the global and local baryon number conservation. The results demonstrate the presence of long-range rapidity correlations between protons and antiprotons. Such correlations originate from the early phase of the collision. The experimental results are compared with HIJING and EPOS model calculations, and the dependence of the fluctuation measurements on the phase-space coverage is examined in the context of lattice quantum chromodynamics (LQCD) and hadron resonance gas (HRG) model estimations. The measured third-order cumulants are consistent with zero within experimental uncertainties of about 4% and are described well by LQCD and HRG predictions.