Rapidity-odd directed flow measurements at midrapidity are presented for $\Lambda$, $\bar{\Lambda}$, $K^\pm$, $K^0_s$ and $\phi$ at $\sqrt{s_{NN}} =$ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV in Au+Au collisions recorded by the STAR detector at the Relativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. Results show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum-rule can be a valuable new tool for probing the collision dynamics.
Directed flow $v_1$ as a function of rapidity $y$ for $p$ in 5%–10% central Au+Au collisions at $\sqrt{s_{NN}} =$ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV.
Directed flow $v_1$ as a function of rapidity $y$ for $K^{+}$ in 5%–10% central Au+Au collisions at $\sqrt{s_{NN}} =$ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV.
Directed flow $v_1$ as a function of rapidity $y$ for $p$ in 10%–40% central Au+Au collisions at $\sqrt{s_{NN}} =$ 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV.
Recently, multiparticle-correlation measurements of relativistic $p/d/^3$He$+$Au, $p$$+$Pb, and even $p$$+$$p$ collisions have shown surprising collective signatures. Here we present beam-energy-scan measurements of 2-, 4-, and 6-particle angular correlations in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}$=200, 62.4, 39, and 19.6 GeV. We also present measurements of 2- and 4-particle angular correlations in $p$$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV. We find the 4-particle cumulant to be real-valued for $d$$+$Au collisions at all four energies. We also find that the 4-particle cumulant in $p$$+$Au has the opposite sign as that in $d$$+$Au, indicating that the correlations are geometrical and therefore collective in origin. Further we find that the 6-particle cumulant agrees with the 4-particle cumulant in $d$$+$Au collisions at 200 GeV, which indicates that nonflow effects are subdominant and provides strong evidence of collectivity.
Components $\langle\langle$4$\rangle\rangle$ and 2$\langle\langle$2$\rangle\rangle^{2}$ and cumulant $c_2${4} = $\langle\langle$4$\rangle\rangle$ - 2$\langle\langle$2$\rangle\rangle^{2}$ as a function of $N^{FVTX}_{tracks}$. (a) and (b) show the components and cumulant, respectively, in $p$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. (c) and (d) show the components and cumulant, respectively, in $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. (b) and (d) also show the cumulant as measured in AMPT for $p$+Au and $d$+Au, respectively, indicated by the green line. The shaded green band indicates the statistical uncertainty on the AMPT values.
Components $\langle\langle$4$\rangle\rangle$ and 2$\langle\langle$2$\rangle\rangle^{2}$ and cumulant $c_2${4} = $\langle\langle$4$\rangle\rangle$ - 2$\langle\langle$2$\rangle\rangle^{2}$ as a function of $N^{FVTX}_{tracks}$. (a) and (b) show the components and cumulant, respectively, in $p$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. (c) and (d) show the components and cumulant, respectively, in $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. (b) and (d) also show the cumulant as measured in AMPT for $p$+Au and $d$+Au, respectively, indicated by the green line. The shaded green band indicates the statistical uncertainty on the AMPT values.
$v_2${2}, $v_2${2, |$\Delta\eta$| > 2}, and $v_2${4} as a function of $N^{FVTX}_{tracks}$ in $d$+Au collisions with $\sqrt{s_{NN}}$= (a) 200 GeV, (b) 62.4 GeV, (c) 39 GeV, and (d) 19.6 GeV; also shown in (a) is $v_2${6} for $\sqrt{s_{NN}}$= 200 GeV. The arrowheads on the statistical uncertainties indicate cases where the standard 1$\sigma$ uncertainty on the $c_2${4} crosses zero. For 19.6 GeV, the combined confidence interval for $v_2${4} to be real is 79%.
We report measurements of the nuclear modification factor, $R_{ \mathrm{CP}}$, for charged hadrons as well as identified $\pi^{+(-)}$, $K^{+(-)}$, and $p(\overline{p})$ for Au+Au collision energies of $\sqrt{s_{_{ \mathrm{NN}}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-$p_{\mathrm{T}}$ net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra, but is also very similar for the kaon spectra. While the magnitude of the proton $R_{ \mathrm{CP}}$ at high $p_{\mathrm{T}}$ does depend on collision energy, neither the proton nor the anti-proton $R_{ \mathrm{CP}}$ at high $p_{\mathrm{T}}$ exhibit net suppression at any energy. A study of how the binary collision scaled high-$p_{\mathrm{T}}$ yield evolves with centrality reveals a non-monotonic shape that is consistent with the idea that jet-quenching is increasing faster than the combined phenomena that lead to enhancement.
Charged hadron RCP for RHIC BES energies. The uncertainty bands at unity on the right side of the plot correspond to the pT-independent uncertainty in Ncoll scaling with the color in the band corresponding to the color of the data points for that energy. The vertical uncertainty bars correspond to statistical uncertainties and the boxes to systematic uncertainties.
Identified particle (Pion Plus) RCP for RHIC BES energies. The colored shaded boxes describe the point-to-point systematic uncertainties. The uncertainty bands at unity on the right side of the plot correspond to the pT -independent uncertainty in Ncoll scaling with the color in the band corresponding to the color of the data points for that energy.
Identified particle (Pion Minus) RCP for RHIC BES energies. The colored shaded boxes describe the point-to-point systematic uncertainties. The uncertainty bands at unity on the right side of the plot correspond to the pT -independent uncertainty in Ncoll scaling with the color in the band corresponding to the color of the data points for that energy.
During 2015 the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized $p$$+$$p$ collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in $p$$+$$p$ collisions predicts only a moderate atomic-mass-number ($A$) dependence. In contrast, the asymmetries observed at RHIC in $p$$+$$A$ collisions showed a surprisingly strong $A$ dependence in inclusive forward neutron production. The observed asymmetry in $p$$+$Al collisions is much smaller, while the asymmetry in $p$$+$Au collisions is a factor of three larger in absolute value and of opposite sign. The interplay of different neutron production mechanisms is discussed as a possible explanation of the observed $A$ dependence.
Forward neutron $A_N$ in $p$+$A$ collisions for $A$ = 1 ($p$), 27 (Al), and 197 (Au), for ZDC inclusive, ZDC $\otimes$ BBC-tag, and ZDC $\otimes$ BBC-veto triggered samples. The 3% scale uncertainty is from the polarization normalization uncertaintiy.
The cross section and transverse single-spin asymmetries of $\mu^{-}$ and $\mu^{+}$ from open heavy-flavor decays in polarized $p$+$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX experiment during 2012 at the Relativistic Heavy Ion Collider. Because heavy-flavor production is dominated by gluon-gluon interactions at $\sqrt{s}=200$ GeV, these measurements offer a unique opportunity to obtain information on the trigluon correlation functions. The measurements are performed at forward and backward rapidity ($1.4<|y|<2.0$) over the transverse momentum range of $1.25<p_T<7$ GeV/$c$ for the cross section and $1.25<p_T<5$ GeV/$c$ for the asymmetry measurements. The obtained cross section is compared to a fixed-order-plus-next-to-leading-log perturbative-quantum-chromodynamics calculation. The asymmetry results are consistent with zero within uncertainties, and a model calculation based on twist-3 three-gluon correlations agrees with the data.
$A_N$ of negatively-charged muons from open heavy-flavor decays as a function of $p_T$ in the backward ($x_F$ < 0) and forward ($x_F$ > 0) regions.
$A_N$ of positively-charged muons from open heavy-flavor decays as a function of $p_T$ in the backward ($x_F$ < 0) and forward ($x_F$ > 0) regions.
$A_N$ of negatively-charged and positively-charged muons from open heavy-flavor decays as a function of $x_F$, where $x_F$ > 0 is along the direction of the polarized proton.
The STAR Collaboration reports on the photoproduction of $\pi^+\pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $\pi^+\pi^-$ invariant mass spectrum with a combination of $\rho$ and $\omega$ resonances and a direct $\pi^+\pi^-$ continuum. This is the first observation of the $\omega$ in ultra-peripheral collisions, and the first measurement of $\rho-\omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $\omega$ amplitude is consistent with the measured $\gamma p\rightarrow \omega p$ cross section, a classical Glauber calculation and the $\omega\rightarrow\pi^+\pi^-$ branching ratio. The $\omega$ phase angle is similar to that observed at much lower energies, showing that the $\rho-\omega$ phase difference does not depend significantly on photon energy. The $\rho^0$ differential cross section $d\sigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
The $\pi^+\pi^-$ invariant-mass distribution for all selected $\pi\pi$ candidates with $p_T~<~100~\textrm{MeV}/c$.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the present STAR analysis.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the previous STAR analysis, Phys. Rev. C 77 034910 (2008).
The fraction of $J/\psi$ mesons which come from B-meson decay, $\textrm{F}_{B{\rightarrow}J/\psi}$, is measured for J/$\psi$ rapidity \mbox{$1.2<|y|<2.2$} and $p_T>0$ in $p$+$p$ and Cu+Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV with the PHENIX detector. The extracted fraction is $\textrm{F}_{B{\rightarrow}J/\psi}$ = 0.025 $\pm$ 0.006(stat) $\pm$ 0.010(syst) for $p$+$p$ collisions. For Cu+Au collisions, $\textrm{F}_{B{\rightarrow}J/\psi}$ is 0.094 $\pm$ 0.028(stat) $\pm$ 0.037(syst) in the Au-going direction ($-2.2<y<-1.2$) and 0.089 $\pm$ 0.026(stat) $\pm$ 0.040(syst) in the Cu-going direction ($1.2<y<2.2$). The nuclear modification factor, $R_{\rm CuAu}$, of B mesons in Cu+Au collisions is consistent with binary scaling of measured yields in $p$+$p$ at both forward and backward rapidity.
Differential cross section for $p$+$p$ $\rightarrow$ $b\bar{b}$ at $\sqrt{s}$ = 200 GeV.
Fraction F$_{B \rightarrow J/\psi}$ of $B$-meson decays in the inclusive $J/\psi$ sample in $p$+$p$ and Cu+Au collisions at $sqrt{s_{NN}}$ = 200 GeV versus rapidity along with a theoretical estimation based on fixed-order plus next-to-leading logs (FONLL) for the $B \rightarrow J/\psi$ cross section and Color-Evaporation-Model (CEM) for the prompt $J/\psi$.
Fraction F$_{B \rightarrow J/\psi}$ of $B$-meson decays in the inclusive $J/\psi$ sample in $p$+$p$ and Cu+Au collisions at $sqrt{s_{NN}}$ = 200 GeV versus rapidity along with a theoretical estimation based on fixed-order plus next-to-leading logs (FONLL) for the $B \rightarrow J/\psi$ cross section and Color-Evaporation-Model (CEM) for the prompt $J/\psi$.
We report a measurement of $e^+e^-$ pairs from semileptonic heavy-flavor decays in $p$+$p$ collisions at $\sqrt{s_{NN}}=200$~GeV. The $e^+e^-$ pair yield from $b\bar{b}$ and $c\bar{c}$ is separated by exploiting a double differential fit done simultaneously in dielectron invariant mass and $p_T$. We used three different event generators, {\sc pythia}, {\sc mc@nlo}, and {\sc powheg}, to simulate the $e^+e^-$ spectra from $c\bar{c}$ and $b\bar{b}$ production. The data can be well described by all three generators within the detector acceptance. However, when using the generators to extrapolate to $4\pi$, significant differences are observed for the total cross section. These difference are less pronounced for $b\bar{b}$ than for $c\bar{c}$. The same model dependence was observed in already published $d$+$A$ data. The $p$+$p$ data are also directly compared with $d$+$A$ data in mass and $p_T$, and within the statistical accuracy no nuclear modification is seen.
Step by step extrapolation from the number of $e^+e^-$ pairs for $m_{e^+e^-}$ > 1.16 GeV/$c^2$ from $c\bar{c}$ in the PHENIX acceptance to the number of $c\bar{c}$ pairs in 4$\pi$ for PYTHIA, MC@NLO, and POWHEG. Numbers are in units of pairs per event using the $c\bar{c}$ cross sections determined in this paper.
Step by step extrapolation from the number of $e^+e^-$ pairs for $m_{e^+e^-}$ > 1.16 GeV/$c^2$ from $b\bar{b}$ in the PHENIX acceptance to the number of $b\bar{b}$ pairs in 4$\pi$ for PYTHIA, MC@NLO, and POWHEG. Numbers are in units of pairs per event using the $b\bar{b}$ cross sections determined in this paper.
Summary of $c\bar{c}$ and $b\bar{b}$ cross sections measured in $p$+$p$ collisions using three different generators, PYTHIA, MC@NLO, and POWHEG.
The STAR Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum hadron trigger, in central and peripheral Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Charged jets are reconstructed with the anti-kT algorithm for jet radii R between 0.2 and 0.5 and with low infrared cutoff of track constituents ($p_T>0.2$ GeV/c). A novel mixed-event technique is used to correct the large uncorrelated background present in heavy ion collisions. Corrected recoil jet distributions are reported at mid-rapidity, for charged-jet transverse momentum $p_T^\mathrm{jet,ch}<30$ GeV/c. Comparison is made to similar measurements for Pb+Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV, to calculations for p+p collisions at $\sqrt{s}$ = 200 GeV based on the PYTHIA Monte Carlo generator and on a Next-to-Leading Order perturbative QCD approach, and to theoretical calculations incorporating jet quenching. The recoil jet yield is suppressed in central relative to peripheral collisions, with the magnitude of the suppression corresponding to medium-induced charged energy transport out of the jet cone of $2.8\pm0.2\mathrm{(stat)}\pm1.5\mathrm{(sys)}$ GeV/c, for $10<p_T^\mathrm{jet,ch}<20$ GeV/c and R = 0.5. No medium-induced change in jet shape is observed for $R<0.5$. The azimuthal distribution of low-$p_T^\mathrm{jet,ch}$ recoil jets may be enhanced at large azimuthal angles to the trigger axis, due to scattering off quasi-particles in the hot QCD medium. Measurement of this distribution gives a 90% statistical confidence upper limit to the yield enhancement at large deflection angles in central Au+Au collisions of $50\pm30\mathrm{(sys)\%}$ of the large-angle yield in p+pcollisions predicted by PYTHIA.
Distribution of p_{T,jet}^{reco,ch} for Au + Au collisions at \sqrt{s_{NN}} = 200 GeV for R = 0.2 jets in central events.
Distribution of p_{T,jet}^{reco,ch} for Au + Au collisions at \sqrt{s_{NN}} = 200 GeV for R = 0.2 jets in central events, mixed events.
Distribution of p_{T,jet}^{reco,ch} for Au + Au collisions at \sqrt{s_{NN}} = 200 GeV for R = 0.2 jets in peripheral events.
The extreme temperatures and energy densities generated by ultra-relativistic collisions between heavy nuclei produce a state of matter with surprising fluid properties. Non-central collisions have angular momentum on the order of 1000$\hbar$, and the resulting fluid may have a strong vortical structure that must be understood to properly describe the fluid. It is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have so far been found. Here we present the first measurement of an alignment between the angular momentum of a non-central collision and the spin of emitted particles, revealing that the fluid produced in heavy ion collisions is by far the most vortical system ever observed. We find that $\Lambda$ and $\overline{\Lambda}$ hyperons show a positive polarization of the order of a few percent, consistent with some hydrodynamic predictions. A previous measurement that reported a null result at higher collision energies is seen to be consistent with the trend of our new observations, though with larger statistical uncertainties. These data provide the first experimental access to the vortical structure of the "perfect fluid" created in a heavy ion collision. They should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the Strong Force. Our results extend the recent discovery of hydrodynamic spin alignment to the subatomic realm.
Lambda and AntiLambda polarization as a function of collision energy. A 0.8% error on the alpha value used in the paper is corrected in this table. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.
Lambda and AntiLambda polarization as a function of collision energy calculated using the new $\alpha_\Lambda=0.732$ updated on PDG2020. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.