The pion form factor has been measured in the space-like q 2 region 0.014 to 0.26 (GeV/ c ) 2 by scattering 300 GeV pions from the electrons of a liquid hydrogen target. A detailed description is given of the apparatus, data analysis and corrections to the data. The mean square charge radius extracted from the data is model-dependent. We find that a form which includes a realistic description of the form factor phase gives a similar results to the naive pole form, and conclude 〈r 2 π 〉 = 0.438±0.008 fm 2 .
No description provided.
We have studied the processpp→γγ+X at\(\sqrt s= 63 GeV\) GeV in the central rapidity region. We report a positive signal at 96% C.L., a ratio γγ/e+e−=4.0±3.0 when the transverse momentum of each photon is above 2 GeV/c, and a cross-sectiondσ/dydMγγ=(5.5±2.7)×10−34 cm2/GeV when |y|<0.5,4<Mγγ<6 GeV.
No description provided.
We have measured the processe+e−→e+e−+hadrons, where one of the scattered electrons was detected at large angles, withQ2 ranging from 7 to 70 (VeV/c)2. The photon structure functionF2γ(x, Q2) was determined at an averageQ2 of 23 (GeV/c)2. The measurements were compared to theoretical predictions of the Quark Parton Model and Quantum Chromodynamics. In both models a hadronic part was added. Within the errors the data are in agreement with the QPM using quark masses of 300 MeV/c2 for the light quarks. The data also agree with a QCD calculation including higher order corrections. A fit yielded a\(\Lambda _{\overline {MS} } \) value of 140−65+190 MeV, where the errors include statistical and systematic uncertainties.
No description provided.
Vector meson production is studied in the reaction γγ→K+K−π+π−. A clear Φ(1020) signal is seen in theK+K− mass distribution and aK*0 (890) signal is visible in theK±π∓ one. Both do not seem to be strongly correlated with quasi two body final states. Cross sections for the processes γγ→K+K−π+π−, γγ→Φπ+π−, γγ→K+0K±π∓ and upper limits for the production of Φp, ΦΦ andK*0\(\overline {K^{ * 0} } \) are given as function of the invariant γγ mass.
No description provided.
First data point is sum of (K* K PI) and (K* AK*).
Non resonant phase space.
In a beam-dump experiment at Fermilab the cross section for charm-particle production has been deduced from a measurement of the prompt neutrino flux. The reaction cross section, if we assume only DD¯ and the dependence on atomic weight A0.75, is 57.2 ± 2.9 ± 8.5 μb/nucleon and the dependence on Feynman x and transverse momentum is EDd3σdpD3∝(1−x)3.2e−1.5p⊥ (p⊥ in GeV/c). The data are consistent with as much as 40% diffractive production of ΛcD¯.
Assuming only (D AD) production and branching ratio BR(D--> NU) = 0.101.
Assuming both (D AD) and (LAMBDA/C AD) production.
We present stdies of events triggered on two high-pT jets, produced inpp collisions at the CERN Intersecting Storage Rings (ISR) at\(\sqrt s \)=63 GeV, using a large solid angle calorimeter. The cross-section for producing two jets is measured in the dijet mass range 17–50 GeV/c2. A high-statistics sample of dijet events, where each jet has transverse energy above 10 GeV, is used to study the structure of jets and the associated event. We find the longitudinal fragmentation function to be similar to that of jets emerging frome+e− collisions but considerably harder than that observed at the Super Proton Synchrotron (SPS)\(p\bar p\) Collider. A steepening of the fragmentation function is observed when increasing the jet energy. Studies of the charge distribution in jets show that these predominantly originate from fragmenting valence quarks. The transverse energy and particle flows are presented as functions of the azimuthal distance from the jet axis.
No description provided.
No description provided.
FRAGMENTATION FUNCTION FOR ET(JET) > 10 GEV.
The inclusive jet cross section has been measured in the UA1 experiment at the CERN p p Collider at centre-of-mass energies √ s = 546 GeV and √ s = 630 eV. The cross sections are found to be consistent with QCD predictions, The observed change in the cross section with the centre-of-mass energy √ s is accounted for in terms of x T scaling.
No description provided.
None
No description provided.
No description provided.
No description provided.
The multiplicities per event of π ± and K ± are measured separately for e + e - annihilation into c c , b b , and light quark pairs at E cm=29 GeV. The K ± multiplicity is higher for heavy quark events than for light quark events. The π ± multiplicity and the π ± scaled differential cross section at low x = E beam/ E beam are found to be higher for b b events than for other events.
Numerical values requested from authors. Data given separately for (b bbar), (c cbar) and light quark jets.
Measured multiplicities for (b bbar) jets.
Measured multiplicities for (c cbar) jets.
The n̄p total and annihilation cross section have been measured from near N̄N threshold (1880 MeV) to 1940 MeV with RMS resolution ranging from 0.08 MeV (1880 MeV) to 6.7 MeV (1940 MeV). No significant narrow meson structures were seen, with 90% CL upper limits of 40–180 mb-MeV on σΓ for states with width less than our resolution. Combined with increasing unitarity bounds on σ as one approaches threshold, these limits confine widths of possible predicted states below 1900 MeV to less than ∼ 1 MeV.
No description provided.