The differential cross section for π+p elastic scattering has been measured at 13.8 GeVc for 0.7<|t|<3.8(GeVc)2. The cross section is found to be equal to that previously obtained for π−p elastic scattering, except in the region |t|=2.8 (GeVc)2, where the π+p data do not show the prominent dip observed in π−p scattering. Data have also been obtained for 13.8−GeVc K+p elastic scattering for 0.8<|t|<2.2 (GeVc)2.
No description provided.
No description provided.
The results presented in this paper are obtained from an analysis of bubble-chamber pictures of K−d interactions at an incident K− momentum of 5.5 GeV/c. Generally, the quasitwo-body final states are produced peripherally, with a small backward peak occurring in some of the final states. The final states Σ−ω, Σ−ρ0, and Σ−φ appear to be produced primarily by vector-meson exchange. In the final state Λ(1520)π− the decay distributions of the Λ(1520) hyperon are found to be consistent with a vector-exchagne production process with M2 coupling at the nucleon vertex. The predictions of the independent-quark model and of other symmetry schemes, namely that the forward cross sections for Σ−ρ0, Σ−ω, Σ−φ production be in the ratios 1: 1: 2, are not inconsistent with our experimental values.
No description provided.
FRACTIONAL FORWARD HYPERON CROSS SECTION AFTER BACKGROUND SUBTRACTION.
No description provided.
We have measured the total inelastic cross section (σinel) and charged-particle multiplicities obtained in pp collisions at 405 GeV/c. The data are from a preliminary 12 000-picture bubble-chamber exposure. We find σinel=32.8±1.0 mb; the low moments of the multiplicity distribution for negative particles are 〈n−〉=3.50±0.07, D−=2.37±0.05, f2−=2.1±0.2, and f3−=0.1±0.9. We also present updated results at 102 GeV/c.
SUPERCEDES PRELIMINARY RESULTS IN J. W. CHAPMAN ET AL., PRL 29, 1686 (1972).
No description provided.
FIT TO ELASTIC DIFFERENTIAL CROSS SECTION FOR 0.05 < -T < 0.7 GEV**2.
The real part of the forward amplitude for Compton scattering on protons was measured through the interference between the Compton and Bethe-Heithler amplitudes by detecting the zero-degree electron pairs asymmetrically. The measurement was made at an average photon energy of 〈k〉=2.2 GeV, and an average momentum transfer to the recoil proton 〈t〉=−0.027 (GeV/c)2. The result confirms the prediction of the Kramers-Kronig relation.
No description provided.
None
APPROXIMATELY CONSTANT MOMENTUM TRANSFER.
We have measured the mean charged multiplicity n¯CH as a function of transverse momentum p⊥ of the forward proton in the reaction p+p→p+MM for five intervals of missing mass (MM) using our Multiparticle Argo Spectrometer System. We observe an increase of n¯CH for p⊥>1 GeV/c.
No description provided.
Proton-proton elastic scattering has been measured at the CERN Intersecting Storage Rings in the four-momentum transfer range 0.001 ⩽… t …⩽ 0.015 GeV 2 at centre-of-mass energies of 23 and 31 GeV. The detection of Coulomb scattering and of its interference with nuclear scattering leads to the determination of the real part of the nuclear amplitude and of the total proton-proton cross section by the optical theorem.
No description provided.
No description provided.
In an exposure of the 30-in. hydrogen bubble chamber to a 303−GeVc proton beam, 2245 interactions have been observed. The measured total cross section is 39.0±1.0 mb and the average charged particle multiplicity 〈nch〉=8.86±0.16.
TOPOLOGICAL CROSS SECTIONS.
The reaction π−+p→π−+p has been studied in the 15-in. bubble chamber at the Princeton-Pennsylvania Accelerator. The elastic scattering cross section was determined to be 8.5 ± 0.2 mb. The forward peak fits to an exponential in t with a slope of 8.1 ± 0.2 (GeV/c)−2. The forward differential cross section dσdΩ(0)=17.9±0.7 mb/sr. A fit of the center-of-mass angular distribution to Legendre polynomials needed terms up to the 12th order, corresponding to the highest nonzero partial wave of L=6.
No description provided.
FORWARD D(SIG)/DOMEGA IS 17.9 +- 0.7 MB/SR. SLOPE IS 8.1 +- 0.2 GEV**-2 (-T = 0.1 TO 0.4 GEV**2).
OTHER 2.27 GEV/C DATA ALSO QUOTED.
In a study of the production mechanism of quasi-two-body final states at the five incident π+ momenta 2.95, 3.2, 3.5, 3.75, and 4.08 GeV/c, approximately 40 000 events with four outgoing charged particles were investigated. The cross sections for the processes π+p→N*++ρ, π+p→N*++ω, π+p→N*++η, and π+p→N*++f have been measured as a function of the pion energy. The differential cross sections and the decay density-matrix elements are discussed in terms of one-meson-exchange models [with absorption (OPEA) and with form factor (OPEW)] and Regge models. For the N*++ρ and the N*++ω reactions, the joint-decay matrix elements are calculated. The formation of N*(2850) in the direct channel is also investigated.
No description provided.
No description provided.
No description provided.