The differential cross section for the inclusive production of isolated prompt photons has been measured as a function of the photon transverse energy E_T-gamma in pp collisions at sqrt(s)=7 TeV using data recorded by the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.9 inverse picobarns. Photons are required to have a pseudorapidity |eta_gamma|<1.45 and E_T-gamma > 21 GeV, covering the kinematic region 0.006 < x_T < 0.086. The measured cross section is found to be in agreement with next-to-leading-order perturbative QCD calculations.
Measured isolated prompt photon differential cross section.
Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb-1 recorded at the Large Hadron Collider. The anti-kt algorithm is used to identify jets, with two jet resolution parameters, R = 0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable $\chi$. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime.
Inclusive jet double-differential cross sections in the |rapidity| range 0 to 0.3, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.3 to 0.8, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.8 to 1.2, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
The production of K_short mesons in pp collisions at a centre-of-mass energy of 0.9 TeV is studied with the LHCb detector at the Large Hadron Collider. The luminosity of the analysed sample is determined using a novel technique, involving measurements of the beam currents, sizes and positions, and is found to be 6.8 +/- 1.0 microbarn^-1. The differential prompt K_short production cross-section is measured as a function of the K_short transverse momentum and rapidity in the region 0 < pT < 1.6 GeV/c and 2.5 < y < 4.0. The data are found to be in reasonable agreement with previous measurements and generator expectations.
The measured cross sections as a function of transverse momentum for prompt K0S production in three rapidity regions. The first systematic error is the uncorrelated systemtatic error and the second is the systematic error correlated across bins.
The double differential prompt K0S production cross section in three rapidity bands.
The double differential prompt K0S production cross section in the rapidity band 2.5 to 4.0.
We present a measurement of direct photon pair production cross sections using 4.2 fb-1 of data collected with the D0 detector at the Fermilab Tevatron proton-antiproton Collider. We measure single differential cross sections as a function of the diphoton mass, the transverse momentum of the diphoton system, the azimuthal angle between the photons, and the polar scattering angle of the photons, as well as the double differential cross sections considering the last three kinematic variables in three diphoton mass bins. The results are compared with different perturbative QCD predictions and event generators.
Single differential cross section DSIG/DM.
Single differential cross section DSIG/DPT.
Single differential cross section DSIG/DPHI.
The inclusive dijet production double differential cross section as a function of the dijet invariant mass and of the largest absolute rapidity of the two jets with the largest transverse momentum in an event is measured in proton anti-proton collisions at sqrt{s} = 1.96 TeV using 0.7 fb^{-1} integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The measurement is performed in six rapidity regions up to a maximum rapidity of 2.4. Next-to-leading order perturbative QCD predictions are found to be in agreement with the data.
Dijet double differential cross section for the absolute rapidity region 0.0 to 0.4.
Dijet double differential cross section for the absolute rapidity region 0.4 to 0.8.
Dijet double differential cross section for the absolute rapidity region 0.8 to 1.2.
The production of jets is studied in deep-inelastic e+p scattering at low negative four momentum transfer squared 5
Inclusive Jet Cross Section ${\rm\frac{d\sigma_{jet}}{dQ^2}}$.
2-Jet Cross Section ${\rm\frac{d\sigma_{2-jet}}{dQ^2}}$.
3-Jet Cross Section ${\rm\frac{d\sigma_{3-jet}}{dQ^2}}$.
The production of prompt photons is measured in the photoproduction regime of electron-proton scattering at HERA. The analysis is based on a data sample corresponding to a total integrated luminosity of 340 pb^-1 collected by the H1 experiment. Cross sections are measured for photons with transverse momentum and pseudorapidity in the range 6 < Et < 15 GeV and -1.0 < eta < 2.4, respectively. Cross sections for events with an additional jet are measured as a function of the transverse energy and pseudorapidity of the jet, and as a function of the fractional momenta x_gamma and x_p carried by the partons entering the hard scattering process. The correlation between the photon and the jet is also studied. The results are compared with QCD predictions based on the collinear and on the k_T factorisation approaches.
Measured inclusive prompt photon cross section in the defined phase space.
Measured prompt photon plus jet cross section in the defined phase space.
Bin averaged differential cross section as a function of ET in the defined phase space.
Beauty production in deep inelastic scattering with events in which a muon and a jet are observed in the final state has been measured with the ZEUS detector at HERA using an integrated luminosity of 114 pb^-1. The fraction of events with beauty quarks in the data was determined using the distribution of the transverse momentum of the muon relative to the jet. The cross section for beauty production was measured in the kinematic range of photon virtuality, Q^2 > 2 Gev^2, and inelasticity, 0.05 < y < 0.7, with the requirement of a muon and a jet. Total and differential cross sections are presented and compared to QCD predictions. The beauty contribution to the structure function F_2 was extracted and is compared to theoretical predictions.
Total visible cross section for BBAR production and decay into MUON+JET.
Measured differential cross section as a function of Q**2.
Measured differential cross section as a function of the muon transverse momentum.
The inclusive production of D*(2010) mesons in deep-inelastic ep scattering is measured in the kinematic region of photon virtuality 100 < Q^2 < 1000 GeV^2 and inelasticity 0.02 < y < 0.7. Single and double differential cross sections for inclusive D* meson production are measured in the visible range defined by |eta(D*)| < 1.5 and p_T(D*) > 1.5 GeV. The data were collected by the H1 experiment during the period from 2004 to 2007 and correspond to an integrated luminosity of 351 pb^{-1}. The charm contribution, F_2^{ccbar}, to the proton structure function F_2 is determined. The measurements are compared with QCD predictions.
Total inclusive cross section for D*+- production.
Single differential cross section DSIG/DPT for D*+- production. The DSYS errors are the uncorrelated and correlated systematicuncertainties respectively.
Single differential cross section DSIG/DETARAP for D*+- production. The DSYS errors are the uncorrelated and correlated systematicuncertainties respectively.
Measurements of the cross sections for charged current deep inelastic scattering in e-p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb-1 collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections dsigma/dQ2, dsigma/dx and dsigma/dy are presented for Q2>200 GeV2. The double-differential cross-section d2sigma/dxdQ2 is presented in the kinematic range 280<Q2<30000 GeV2 and 0.015<x<0.65. The measured cross sections are compared with the predictions of the Standard Model.
Total cross section for CC DIS events for two values of the longitudinal polarization of the electron beam.
Total cross section for CC DIS events as a function of the longitudinal polarization of the electron beam.
Differential cross section DSIG/DQ**2 for the two values of longitudinal polarization of the electron beam.