Showing 9 of 9 results
Measurements of jet cross-section ratios between inclusive bins of jet multiplicity are performed in 140 fb$^{-1}$ of proton--proton collisions with $\sqrt{s}=13$ TeV center-of-mass energy, recorded with the ATLAS detector at CERN's Large Hadron Collider. Observables that are sensitive the energy-scale and angular distribution of radiation due to the strong interaction in the final state are measured double-differentially, in bins of jet multiplicity, and are unfolded to account for acceptance and detector-related effects. Additionally, the scalar sum of the two leading jets' transverse momenta is measured triple-differentially, in bins of the third jet's transverse momentum as well as bins of jet multiplicity. The measured distributions are used to construct ratios of the inclusive jet-multiplicity bins, which have been shown to be sensitive to the strong coupling $\alpha_{\textrm S}$ while being less sensitive than other observables to systematic uncertainties and parton distribution functions. The measured distributions are compared with state-of-the-art QCD calculations, including next-to-next-to-leading-order predictions. Studies leading to reduced jet energy scale uncertainties significantly improve the precision of this work, and are documented herein.
R32 for $H_{T2}$, 60 GeV < $p_{T,3}$
R32 for $H_{T2}$, 0.05 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, 0.1 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, 0.2 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, 0.3 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, pT,jet
R32 for delta y
R32 for delta y max
R32 for $m_{jj}$
R32 for $m_{jj, max}$
R43 for $H_{T2}$, 60 GeV < $p_{T,3}$
R43 for $H_{T2}$, 0.1 x $H_{T2} < $p_{T,3}$
R43 for $H_{T2}$, 0.3 x $H_{T2} < $p_{T,3}$
R43 for $H_{T2}$, pT,jet
R43 for $Delta y_{jj}$
R43 for $Delta y_{jj, max}$
R43 for $m_{jj}$
R43 for $m_{jj, max}$
R54 for $H_{T2}$, 60 GeV < $p_{T,3}$
R54 for $H_{T2}$, 0.1 x $H_{T2} < $p_{T,3}$
R54 for $H_{T2}$, 0.3 x $H_{T2} < $p_{T,3}$
R54 for $Delta y_{jj}$
R54 for $Delta y_{jj, max}$
R54 for $m_{jj}$
R54 for $m_{jj, max}$
R42 for $H_{T2}$, 60 GeV < $p_{T,3}$
R42 for $H_{T2}$, 0.1 x $H_{T2} < $p_{T,3}$
R42 for $H_{T2}$, 0.3 x $H_{T2} < $p_{T,3}$
R42, pT,jet
R42 for $Delta y_{jj}$
R42 for $Delta y_{jj, max}$
R42 for $m_{jj}$
R42 for $m_{jj}$
HT2, $p_{T,3}$ > 60 GeV, $N_{jet}$ >= 2
HT2, $p_{T,3}$ > 60 GeV, $N_{jet}$ >=3
HT2, $p_{T,3}$ > 60 GeV, $N_{jet}$ >=4
HT2, $p_{T,3}$ > 60 GeV, $N_{jet}$ >= 5
HT2, $p_{T,3}$/HT2 > 0.05, $N_{jet}$ >= 2
HT2, $p_{T,3}$/HT2 > 0.05, $N_{jet}$ >=3
HT2, $p_{T,3}$/HT2 > 0.05, $N_{jet}$ >=4
HT2, $p_{T,3}$/HT2 > 0.05, $N_{jet}$ >= 5
HT2, $p_{T,3}$/HT2 > 0.10, $N_{jet}$ >= 2
HT2, $p_{T,3}$/HT2 > 0.10, $N_{jet}$ >=3
HT2, $p_{T,3}$/HT2 > 0.10, $N_{jet}$ >=4
HT2, $p_{T,3}$/HT2 > 0.10, $N_{jet}$ >= 5
HT2, $p_{T,3}$/HT2 > 0.20, $N_{jet}$ >= 2
HT2, $p_{T,3}$/HT2 > 0.20, $N_{jet}$ >=3
HT2, $p_{T,3}$/HT2 > 0.20, $N_{jet}$ >=4
HT2, $p_{T,3}$/HT2 > 0.20, $N_{jet}$ >= 5
HT2, $p_{T,3}$/HT2 > 0.30, $N_{jet}$ >= 2
HT2, $p_{T,3}$/HT2 > 0.30, $N_{jet}$ >=3
HT2, $p_{T,3}$/HT2 > 0.30, $N_{jet}$ >=4
HT2, $p_{T,3}$/HT2 > 0.30, $N_{jet}$ >= 5
pTnincl
pTnincl
pTnincl
mjj max, $N_{jet}$ >= 2
mjj max, $N_{jet}$ >= 3
mjj max, $N_{jet}$ >= 4
mjj max, $N_{jet}$ >= 5
$m_{jj}$ $N_{jet}$ >= 2
$m_{jj}$ $N_{jet}$ >= 3
$m_{jj}$ $N_{jet}$ >= 4
$m_{jj}$ $N_{jet}$ >= 5
$Delta y_{jj}$ $N_{jet}$ >= 2
$Delta y_{jj}$ $N_{jet}$ >= 3
$Delta y_{jj}$ $N_{jet}$ >= 4
$Delta y_{jj}$ $N_{jet}$ >= 5
$Delta y_{jj, max}$, $N_{jet}$ >= 2
$Delta y_{jj, max}$, $N_{jet}$ >= 3
$Delta y_{jj, max}$, $N_{jet}$ >= 4
$Delta y_{jj, max}$, $N_{jet}$ >= 5
R32 for $H_{T2}$, 60 GeV < $p_{T,3}$
R32 for $H_{T2}$, 0.05 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, 0.1 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, 0.2 x $H_{T2} < $p_{T,3}$
R32 for $H_{T2}$, 0.3 x $H_{T2} < $p_{T,3}$
This Letter presents a differential cross-section measurement of Lund subjet multiplicities, suitable for testing current and future parton shower Monte Carlo algorithms. This measurement is made in dijet events in 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected with the ATLAS detector at CERN's Large Hadron Collider. The data are unfolded to account for acceptance and detector-related effects, and are then compared with several Monte Carlo models and to recent resummed analytical calculations. The experimental precision achieved in the measurement allows tests of higher-order effects in QCD predictions. Most predictions fail to accurately describe the measured data, particularly at large values of jet transverse momentum accessible at the Large Hadron Collider, indicating the measurement's utility as an input to future parton shower developments and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
IRing2 for HT2>=500 GeV, NJets>=5
IRing2 for HT2>=1000 GeV, NJets>=2
IRing2 for HT2>=1000 GeV, NJets>=3
IRing2 for HT2>=1000 GeV, NJets>=4
IRing2 for HT2>=1000 GeV, NJets>=5
IRing2 for HT2>=1500 GeV, NJets>=2
IRing2 for HT2>=1500 GeV, NJets>=3
IRing2 for HT2>=1500 GeV, NJets>=4
IRing2 for HT2>=1500 GeV, NJets>=5
IRing128 for HT2>=500 GeV, NJets>=2
IRing128 for HT2>=500 GeV, NJets>=3
IRing128 for HT2>=500 GeV, NJets>=4
IRing128 for HT2>=500 GeV, NJets>=5
IRing128 for HT2>=1000 GeV, NJets>=2
IRing128 for HT2>=1000 GeV, NJets>=3
IRing128 for HT2>=1000 GeV, NJets>=4
IRing128 for HT2>=1000 GeV, NJets>=5
IRing128 for HT2>=1500 GeV, NJets>=2
IRing128 for HT2>=1500 GeV, NJets>=3
IRing128 for HT2>=1500 GeV, NJets>=4
IRing128 for HT2>=1500 GeV, NJets>=5
ICyl16 for HT2>=500 GeV, NJets>=2
ICyl16 for HT2>=500 GeV, NJets>=3
ICyl16 for HT2>=500 GeV, NJets>=4
ICyl16 for HT2>=500 GeV, NJets>=5
ICyl16 for HT2>=1000 GeV, NJets>=2
ICyl16 for HT2>=1000 GeV, NJets>=3
ICyl16 for HT2>=1000 GeV, NJets>=4
ICyl16 for HT2>=1000 GeV, NJets>=5
ICyl16 for HT2>=1500 GeV, NJets>=2
ICyl16 for HT2>=1500 GeV, NJets>=3
ICyl16 for HT2>=1500 GeV, NJets>=4
ICyl16 for HT2>=1500 GeV, NJets>=5
IRing2 covariance for HT2>=500 GeV, NJets>=2 (Table 1)
IRing2 covariance for HT2>=500 GeV, NJets>=3 (Table 2)
IRing2 covariance for HT2>=500 GeV, NJets>=4 (Table 3)
IRing2 covariance for HT2>=500 GeV, NJets>=5 (Table 4)
IRing2 covariance for HT2>=1000 GeV, NJets>=2 (Table 5)
IRing2 covariance for HT2>=1000 GeV, NJets>=3 (Table 6)
IRing2 covariance for HT2>=1000 GeV, NJets>=4 (Table 7)
IRing2 covariance for HT2>=1000 GeV, NJets>=5 (Table 8)
IRing2 covariance for HT2>=1500 GeV, NJets>=2 (Table 9)
IRing2 covariance for HT2>=1500 GeV, NJets>=3 (Table 10)
IRing2 covariance for HT2>=1500 GeV, NJets>=4 (Table 11)
IRing2 covariance for HT2>=1500 GeV, NJets>=5 (Table 12)
IRing128 covariance for HT2>=500 GeV, NJets>=2 (Table 13)
IRing128 covariance for HT2>=500 GeV, NJets>=3 (Table 14)
IRing128 covariance for HT2>=500 GeV, NJets>=4 (Table 15)
IRing128 covariance for HT2>=500 GeV, NJets>=5 (Table 16)
IRing128 covariance for HT2>=1000 GeV, NJets>=2 (Table 17)
IRing128 covariance for HT2>=1000 GeV, NJets>=3 (Table 18)
IRing128 covariance for HT2>=1000 GeV, NJets>=4 (Table 19)
IRing128 covariance for HT2>=1000 GeV, NJets>=5 (Table 20)
IRing128 covariance for HT2>=1500 GeV, NJets>=2 (Table 21)
IRing128 covariance for HT2>=1500 GeV, NJets>=3 (Table 22)
IRing128 covariance for HT2>=1500 GeV, NJets>=4 (Table 23)
IRing128 covariance for HT2>=1500 GeV, NJets>=5 (Table 24)
ICyl16 covariance for HT2>=500 GeV, NJets>=2 (Table 25)
ICyl16 covariance for HT2>=500 GeV, NJets>=3 (Table 26)
ICyl16 covariance for HT2>=500 GeV, NJets>=4 (Table 27)
ICyl16 covariance for HT2>=500 GeV, NJets>=5 (Table 28)
ICyl16 covariance for HT2>=1000 GeV, NJets>=2 (Table 29)
ICyl16 covariance for HT2>=1000 GeV, NJets>=3 (Table 30)
ICyl16 covariance for HT2>=1000 GeV, NJets>=4 (Table 31)
ICyl16 covariance for HT2>=1000 GeV, NJets>=5 (Table 32)
ICyl16 covariance for HT2>=1500 GeV, NJets>=2 (Table 33)
ICyl16 covariance for HT2>=1500 GeV, NJets>=3 (Table 34)
ICyl16 covariance for HT2>=1500 GeV, NJets>=4 (Table 35)
ICyl16 covariance for HT2>=1500 GeV, NJets>=5 (Table 36)
IRing2 covariance, complete
1-IRing128 covariance, complete
1-ICyl16 covariance, complete
Measurements of jet substructure describing the composition of quark- and gluon-initiated jets are presented. Proton-proton (pp) collision data at $\sqrt{s}$ =13 TeV collected with the CMS detector are used, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Generalized angularities are measured that characterize the jet substructure and distinguish quark- and gluon-initiated jets. These observables are sensitive to the distributions of transverse momenta and angular distances within a jet. The analysis is performed using a data sample of dijet events enriched in gluon-initiated jets, and, for the first time, a Z+jet event sample enriched in quark-initiated jets. The observables are measured in bins of jet transverse momentum, and as a function of the jet radius parameter. Each measurement is repeated applying a "soft drop" grooming procedure that removes soft and large angle radiation from the jet. Using these measurements, the ability of various models to describe jet substructure is assessed, showing a clear need for improvements in Monte Carlo generators.
Particle-level distributions of ungroomed AK4 multiplicity in 120 < PT < 150 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK4 multiplicity in 120 < PT < 150 GeV in the central dijet region.
Particle-level distributions of ungroomed AK4 pTD2 in 120 < PT < 150 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK4 pTD2 in 120 < PT < 150 GeV in the central dijet region.
Particle-level distributions of ungroomed AK4 width in 120 < PT < 150 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 LHA in 120 < PT < 150 GeV in the Z+jet region.
Mean of ungroomed LHA (charged-only) for AK4 jets as a function of PT in the Z+jet region.
Mean of ungroomed pTD2 (charged-only) for AK4 jets as a function of PT in the forward dijet region.
Mean of ungroomed thrust (charged-only) for AK4 jets as a function of PT in the central dijet region.
Mean of ungroomed multiplicity for AK4 jets as a function of PT in the forward dijet region.
Mean of groomed multiplicity (charged-only) for AK4 jets as a function of PT in the Z+jet region.
Mean of groomed pTD2 (charged-only) for AK4 jets as a function of PT in the Z+jet region.
Mean of groomed thrust (charged-only) for AK4 jets as a function of PT in the Z+jet region.
Mean of ungroomed multiplicity for AK8 jets as a function of PT in the Z+jet region.
Mean of groomed multiplicity for AK8 jets as a function of PT in the Z+jet region.
Particle-level distributions of ungroomed AK4 LHA (charged-only) in 65 < PT < 88 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK4 multiplicity (charged-only) in 186 < PT < 254 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK4 multiplicity (charged-only) in 50 < PT < 65 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of ungroomed AK4 multiplicity (charged-only) in 1000 < PT < 4000 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of ungroomed AK4 pTD2 (charged-only) in 150 < PT < 186 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK4 pTD2 (charged-only) in 614 < PT < 800 GeV in the central dijet region.
Particle-level distributions of ungroomed AK4 thrust (charged-only) in 65 < PT < 88 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK4 thrust (charged-only) in 50 < PT < 65 GeV in the central dijet region.
Particle-level distributions of ungroomed AK4 thrust (charged-only) in 50 < PT < 65 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK4 thrust (charged-only) in 326 < PT < 408 GeV in the forward dijet region.
Correlation matrix of the particle-level distributions of ungroomed AK4 width (charged-only) in 88 < PT < 120 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK4 width (charged-only) in 65 < PT < 88 GeV in the central dijet region.
Particle-level distributions of ungroomed AK4 multiplicity in 88 < PT < 120 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK4 multiplicity in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK4 multiplicity in 481 < PT < 614 GeV in the forward dijet region.
Correlation matrix of the particle-level distributions of ungroomed AK4 pTD2 in 65 < PT < 88 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK4 pTD2 in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK4 pTD2 in 326 < PT < 408 GeV in the forward dijet region.
Correlation matrix of the particle-level distributions of ungroomed AK4 thrust in 120 < PT < 150 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK4 thrust in 1000 < PT < 4000 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of ungroomed AK4 width in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK4 width in 65 < PT < 88 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK4 width in 150 < PT < 186 GeV in the forward dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 50 < PT < 65 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 65 < PT < 88 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 88 < PT < 120 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 120 < PT < 150 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 150 < PT < 186 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 186 < PT < 254 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 254 < PT < 326 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 326 < PT < 408 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 pTD2 in 50 < PT < 65 GeV in the central dijet region.
Particle-level distributions of groomed AK4 pTD2 in 65 < PT < 88 GeV in the central dijet region.
Particle-level distributions of groomed AK4 pTD2 in 88 < PT < 120 GeV in the central dijet region.
Particle-level distributions of groomed AK4 pTD2 in 120 < PT < 150 GeV in the central dijet region.
Particle-level distributions of groomed AK4 pTD2 in 150 < PT < 186 GeV in the central dijet region.
Particle-level distributions of groomed AK4 pTD2 in 186 < PT < 254 GeV in the central dijet region.
Particle-level distributions of groomed AK4 pTD2 in 254 < PT < 326 GeV in the central dijet region.
Particle-level distributions of groomed AK4 pTD2 in 408 < PT < 481 GeV in the central dijet region.
Particle-level distributions of groomed AK4 pTD2 in 481 < PT < 614 GeV in the central dijet region.
Particle-level distributions of groomed AK4 pTD2 in 614 < PT < 800 GeV in the central dijet region.
Particle-level distributions of groomed AK4 pTD2 in 800 < PT < 1000 GeV in the central dijet region.
Particle-level distributions of groomed AK4 pTD2 in 1000 < PT < 4000 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 50 < PT < 65 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 65 < PT < 88 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 88 < PT < 120 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 120 < PT < 150 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 150 < PT < 186 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 186 < PT < 254 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 254 < PT < 326 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 326 < PT < 408 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 408 < PT < 481 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 481 < PT < 614 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 614 < PT < 800 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 800 < PT < 1000 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 pTD2 in 1000 < PT < 4000 GeV in the central dijet region.
Particle-level distributions of groomed AK4 pTD2 in 50 < PT < 65 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 pTD2 in 65 < PT < 88 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 pTD2 in 88 < PT < 120 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 pTD2 in 120 < PT < 150 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 pTD2 in 150 < PT < 186 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 pTD2 in 186 < PT < 254 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 pTD2 in 254 < PT < 326 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 pTD2 in 326 < PT < 408 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 pTD2 in 408 < PT < 481 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 pTD2 in 481 < PT < 614 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 pTD2 in 800 < PT < 1000 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 pTD2 in 1000 < PT < 4000 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 thrust in 50 < PT < 65 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 thrust in 65 < PT < 88 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 thrust in 88 < PT < 120 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 thrust in 120 < PT < 150 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 thrust in 150 < PT < 186 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 thrust in 186 < PT < 254 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 thrust in 254 < PT < 326 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 thrust in 326 < PT < 408 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 thrust in 408 < PT < 1500 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 50 < PT < 65 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 65 < PT < 88 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 88 < PT < 120 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 120 < PT < 150 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 150 < PT < 186 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 186 < PT < 254 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 254 < PT < 326 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 326 < PT < 408 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 thrust in 50 < PT < 65 GeV in the central dijet region.
Particle-level distributions of groomed AK4 thrust in 65 < PT < 88 GeV in the central dijet region.
Particle-level distributions of groomed AK4 thrust in 88 < PT < 120 GeV in the central dijet region.
Particle-level distributions of groomed AK4 thrust in 120 < PT < 150 GeV in the central dijet region.
Particle-level distributions of groomed AK4 thrust in 150 < PT < 186 GeV in the central dijet region.
Particle-level distributions of groomed AK4 thrust in 186 < PT < 254 GeV in the central dijet region.
Particle-level distributions of groomed AK4 thrust in 254 < PT < 326 GeV in the central dijet region.
Particle-level distributions of groomed AK4 thrust in 326 < PT < 408 GeV in the central dijet region.
Particle-level distributions of groomed AK4 thrust in 408 < PT < 481 GeV in the central dijet region.
Particle-level distributions of groomed AK4 thrust in 481 < PT < 614 GeV in the central dijet region.
Particle-level distributions of groomed AK4 thrust in 614 < PT < 800 GeV in the central dijet region.
Particle-level distributions of groomed AK4 thrust in 800 < PT < 1000 GeV in the central dijet region.
Particle-level distributions of groomed AK4 thrust in 1000 < PT < 4000 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 50 < PT < 65 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 65 < PT < 88 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 88 < PT < 120 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 120 < PT < 150 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 150 < PT < 186 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 186 < PT < 254 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 254 < PT < 326 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 326 < PT < 408 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 408 < PT < 481 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 481 < PT < 614 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 614 < PT < 800 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 800 < PT < 1000 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 thrust in 1000 < PT < 4000 GeV in the central dijet region.
Particle-level distributions of groomed AK4 thrust in 50 < PT < 65 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 thrust in 65 < PT < 88 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 thrust in 88 < PT < 120 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 thrust in 120 < PT < 150 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 thrust in 150 < PT < 186 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 thrust in 186 < PT < 254 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 thrust in 326 < PT < 408 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 thrust in 408 < PT < 481 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 thrust in 481 < PT < 614 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 thrust in 614 < PT < 800 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 thrust in 800 < PT < 1000 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 thrust in 1000 < PT < 4000 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 width in 50 < PT < 65 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 width in 65 < PT < 88 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 width in 88 < PT < 120 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 width in 120 < PT < 150 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 width in 150 < PT < 186 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 width in 186 < PT < 254 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 width in 254 < PT < 326 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 width in 326 < PT < 408 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 width in 408 < PT < 1500 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 50 < PT < 65 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 65 < PT < 88 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 88 < PT < 120 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 120 < PT < 150 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 150 < PT < 186 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 186 < PT < 254 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 254 < PT < 326 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 326 < PT < 408 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of groomed AK4 width in 50 < PT < 65 GeV in the central dijet region.
Particle-level distributions of groomed AK4 width in 65 < PT < 88 GeV in the central dijet region.
Particle-level distributions of groomed AK4 width in 88 < PT < 120 GeV in the central dijet region.
Particle-level distributions of groomed AK4 width in 120 < PT < 150 GeV in the central dijet region.
Particle-level distributions of groomed AK4 width in 150 < PT < 186 GeV in the central dijet region.
Particle-level distributions of groomed AK4 width in 254 < PT < 326 GeV in the central dijet region.
Particle-level distributions of groomed AK4 width in 326 < PT < 408 GeV in the central dijet region.
Particle-level distributions of groomed AK4 width in 408 < PT < 481 GeV in the central dijet region.
Particle-level distributions of groomed AK4 width in 481 < PT < 614 GeV in the central dijet region.
Particle-level distributions of groomed AK4 width in 614 < PT < 800 GeV in the central dijet region.
Particle-level distributions of groomed AK4 width in 800 < PT < 1000 GeV in the central dijet region.
Particle-level distributions of groomed AK4 width in 1000 < PT < 4000 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 50 < PT < 65 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 65 < PT < 88 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 88 < PT < 120 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 120 < PT < 150 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 150 < PT < 186 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 186 < PT < 254 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 254 < PT < 326 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 326 < PT < 408 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 408 < PT < 481 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 481 < PT < 614 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 614 < PT < 800 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 800 < PT < 1000 GeV in the central dijet region.
Correlation matrix of the particle-level distributions of groomed AK4 width in 1000 < PT < 4000 GeV in the central dijet region.
Particle-level distributions of groomed AK4 width in 50 < PT < 65 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 width in 65 < PT < 88 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 width in 88 < PT < 120 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 width in 120 < PT < 150 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 width in 150 < PT < 186 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 width in 186 < PT < 254 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 width in 254 < PT < 326 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 width in 326 < PT < 408 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 width in 408 < PT < 481 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 width in 614 < PT < 800 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 width in 800 < PT < 1000 GeV in the forward dijet region.
Particle-level distributions of groomed AK4 width in 1000 < PT < 4000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA in 50 < PT < 65 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 LHA in 65 < PT < 88 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 LHA in 88 < PT < 120 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 LHA in 150 < PT < 186 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 LHA in 186 < PT < 254 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 LHA in 254 < PT < 326 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 LHA in 326 < PT < 408 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 LHA in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 LHA in 50 < PT < 65 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA in 65 < PT < 88 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA in 88 < PT < 120 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA in 150 < PT < 186 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA in 186 < PT < 254 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA in 254 < PT < 326 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA in 326 < PT < 408 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA in 408 < PT < 481 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA in 481 < PT < 614 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA in 614 < PT < 800 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA in 800 < PT < 1000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA in 1000 < PT < 4000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA in 65 < PT < 88 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA in 88 < PT < 120 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA in 120 < PT < 150 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA in 150 < PT < 186 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA in 186 < PT < 254 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA in 254 < PT < 326 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA in 326 < PT < 408 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA in 408 < PT < 481 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA in 481 < PT < 614 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA in 614 < PT < 800 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA in 1000 < PT < 4000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 50 < PT < 65 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 65 < PT < 88 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 120 < PT < 150 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 150 < PT < 186 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 186 < PT < 254 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 326 < PT < 408 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 408 < PT < 1500 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 LHA (charged-only) in 50 < PT < 65 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 LHA (charged-only) in 65 < PT < 88 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 LHA (charged-only) in 88 < PT < 120 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 LHA (charged-only) in 120 < PT < 150 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 LHA (charged-only) in 150 < PT < 186 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 LHA (charged-only) in 186 < PT < 254 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 LHA (charged-only) in 254 < PT < 326 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 LHA (charged-only) in 326 < PT < 408 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 LHA (charged-only) in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 50 < PT < 65 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 88 < PT < 120 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 120 < PT < 150 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 150 < PT < 186 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 186 < PT < 254 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 254 < PT < 326 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 326 < PT < 408 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 408 < PT < 481 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 481 < PT < 614 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 614 < PT < 800 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 800 < PT < 1000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 1000 < PT < 4000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 50 < PT < 65 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 65 < PT < 88 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 88 < PT < 120 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 120 < PT < 150 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 150 < PT < 186 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 186 < PT < 254 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 254 < PT < 326 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 326 < PT < 408 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 408 < PT < 481 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 481 < PT < 614 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 614 < PT < 800 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 800 < PT < 1000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 LHA (charged-only) in 1000 < PT < 4000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 50 < PT < 65 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 65 < PT < 88 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 88 < PT < 120 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 120 < PT < 150 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 150 < PT < 186 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 186 < PT < 254 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 254 < PT < 326 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 326 < PT < 408 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 50 < PT < 65 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 65 < PT < 88 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 88 < PT < 120 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 120 < PT < 150 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 150 < PT < 186 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 186 < PT < 254 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 254 < PT < 326 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 326 < PT < 408 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 50 < PT < 65 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 65 < PT < 88 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 120 < PT < 150 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 150 < PT < 186 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 186 < PT < 254 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 254 < PT < 326 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 326 < PT < 408 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 408 < PT < 481 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 481 < PT < 614 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 614 < PT < 800 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 800 < PT < 1000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 1000 < PT < 4000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 50 < PT < 65 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 65 < PT < 88 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 88 < PT < 120 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 120 < PT < 150 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 150 < PT < 186 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 186 < PT < 254 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 254 < PT < 326 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 326 < PT < 408 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 408 < PT < 481 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 481 < PT < 614 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 614 < PT < 800 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 800 < PT < 1000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity (charged-only) in 1000 < PT < 4000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 50 < PT < 65 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 65 < PT < 88 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 88 < PT < 120 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 120 < PT < 150 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 150 < PT < 186 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 186 < PT < 254 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 326 < PT < 408 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 408 < PT < 1500 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 50 < PT < 65 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 65 < PT < 88 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 88 < PT < 120 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 120 < PT < 150 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 150 < PT < 186 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 186 < PT < 254 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 254 < PT < 326 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 326 < PT < 408 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 50 < PT < 65 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 65 < PT < 88 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 88 < PT < 120 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 120 < PT < 150 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 150 < PT < 186 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 186 < PT < 254 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 254 < PT < 326 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 326 < PT < 408 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 408 < PT < 481 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 481 < PT < 614 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 614 < PT < 800 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 800 < PT < 1000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 1000 < PT < 4000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 50 < PT < 65 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 65 < PT < 88 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 88 < PT < 120 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 120 < PT < 150 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 186 < PT < 254 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 254 < PT < 326 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 326 < PT < 408 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 408 < PT < 481 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 481 < PT < 614 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 614 < PT < 800 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 800 < PT < 1000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 (charged-only) in 1000 < PT < 4000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 50 < PT < 65 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 65 < PT < 88 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 88 < PT < 120 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 120 < PT < 150 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 150 < PT < 186 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 186 < PT < 254 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 254 < PT < 326 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 326 < PT < 408 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 408 < PT < 1500 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 thrust (charged-only) in 50 < PT < 65 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 thrust (charged-only) in 65 < PT < 88 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 thrust (charged-only) in 88 < PT < 120 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 thrust (charged-only) in 120 < PT < 150 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 thrust (charged-only) in 150 < PT < 186 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 thrust (charged-only) in 186 < PT < 254 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 thrust (charged-only) in 254 < PT < 326 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 thrust (charged-only) in 326 < PT < 408 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 thrust (charged-only) in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 50 < PT < 65 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 65 < PT < 88 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 88 < PT < 120 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 150 < PT < 186 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 186 < PT < 254 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 254 < PT < 326 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 326 < PT < 408 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 408 < PT < 481 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 481 < PT < 614 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 614 < PT < 800 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 800 < PT < 1000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 1000 < PT < 4000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 50 < PT < 65 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 65 < PT < 88 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 88 < PT < 120 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 120 < PT < 150 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 150 < PT < 186 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 186 < PT < 254 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 254 < PT < 326 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 326 < PT < 408 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 408 < PT < 481 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 481 < PT < 614 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 614 < PT < 800 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 800 < PT < 1000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust (charged-only) in 1000 < PT < 4000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 50 < PT < 65 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 65 < PT < 88 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 88 < PT < 120 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 150 < PT < 186 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 186 < PT < 254 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 254 < PT < 326 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 326 < PT < 408 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 408 < PT < 1500 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 width (charged-only) in 50 < PT < 65 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 width (charged-only) in 65 < PT < 88 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 width (charged-only) in 88 < PT < 120 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 width (charged-only) in 120 < PT < 150 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 width (charged-only) in 150 < PT < 186 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 width (charged-only) in 186 < PT < 254 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 width (charged-only) in 254 < PT < 326 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 width (charged-only) in 326 < PT < 408 GeV in the Z+jet region.
Correlation matrix of the particle-level distributions of ungroomed AK8 width (charged-only) in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 50 < PT < 65 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 65 < PT < 88 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 88 < PT < 120 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 120 < PT < 150 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 150 < PT < 186 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 186 < PT < 254 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 254 < PT < 326 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 326 < PT < 408 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 408 < PT < 481 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 481 < PT < 614 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 614 < PT < 800 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 800 < PT < 1000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 1000 < PT < 4000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 65 < PT < 88 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 88 < PT < 120 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 120 < PT < 150 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 150 < PT < 186 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 186 < PT < 254 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 254 < PT < 326 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 326 < PT < 408 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 408 < PT < 481 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 481 < PT < 614 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 614 < PT < 800 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 800 < PT < 1000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 width (charged-only) in 1000 < PT < 4000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 50 < PT < 65 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity in 65 < PT < 88 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity in 88 < PT < 120 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity in 120 < PT < 150 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity in 150 < PT < 186 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity in 186 < PT < 254 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity in 254 < PT < 326 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity in 326 < PT < 408 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 multiplicity in 50 < PT < 65 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 65 < PT < 88 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 88 < PT < 120 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 120 < PT < 150 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 186 < PT < 254 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 326 < PT < 408 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 408 < PT < 481 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 481 < PT < 614 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 614 < PT < 800 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 800 < PT < 1000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 1000 < PT < 4000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 50 < PT < 65 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 65 < PT < 88 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 88 < PT < 120 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 120 < PT < 150 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 150 < PT < 186 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 186 < PT < 254 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 254 < PT < 326 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 326 < PT < 408 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 408 < PT < 481 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 481 < PT < 614 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 614 < PT < 800 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 800 < PT < 1000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 multiplicity in 1000 < PT < 4000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 50 < PT < 65 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 in 65 < PT < 88 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 in 88 < PT < 120 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 in 120 < PT < 150 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 in 150 < PT < 186 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 in 186 < PT < 254 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 in 254 < PT < 326 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 in 326 < PT < 408 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 pTD2 in 50 < PT < 65 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 65 < PT < 88 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 88 < PT < 120 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 120 < PT < 150 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 150 < PT < 186 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 186 < PT < 254 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 326 < PT < 408 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 408 < PT < 481 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 481 < PT < 614 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 614 < PT < 800 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 800 < PT < 1000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 1000 < PT < 4000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 50 < PT < 65 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 65 < PT < 88 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 88 < PT < 120 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 120 < PT < 150 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 150 < PT < 186 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 186 < PT < 254 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 254 < PT < 326 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 326 < PT < 408 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 408 < PT < 481 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 481 < PT < 614 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 614 < PT < 800 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 800 < PT < 1000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 pTD2 in 1000 < PT < 4000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust in 50 < PT < 65 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust in 65 < PT < 88 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust in 88 < PT < 120 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust in 120 < PT < 150 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust in 150 < PT < 186 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust in 186 < PT < 254 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust in 254 < PT < 326 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust in 326 < PT < 408 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 thrust in 50 < PT < 65 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust in 65 < PT < 88 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust in 88 < PT < 120 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust in 120 < PT < 150 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust in 150 < PT < 186 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust in 186 < PT < 254 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust in 254 < PT < 326 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust in 408 < PT < 481 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust in 481 < PT < 614 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust in 614 < PT < 800 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust in 800 < PT < 1000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust in 1000 < PT < 4000 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 thrust in 50 < PT < 65 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust in 65 < PT < 88 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust in 88 < PT < 120 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust in 120 < PT < 150 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust in 150 < PT < 186 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust in 186 < PT < 254 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust in 254 < PT < 326 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust in 326 < PT < 408 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust in 408 < PT < 481 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust in 481 < PT < 614 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust in 614 < PT < 800 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust in 800 < PT < 1000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 thrust in 1000 < PT < 4000 GeV in the forward dijet region.
Particle-level distributions of ungroomed AK8 width in 50 < PT < 65 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width in 65 < PT < 88 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width in 88 < PT < 120 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width in 120 < PT < 150 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width in 150 < PT < 186 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width in 186 < PT < 254 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width in 254 < PT < 326 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width in 326 < PT < 408 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width in 408 < PT < 1500 GeV in the Z+jet region.
Particle-level distributions of ungroomed AK8 width in 50 < PT < 65 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width in 65 < PT < 88 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width in 88 < PT < 120 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width in 120 < PT < 150 GeV in the central dijet region.
Particle-level distributions of ungroomed AK8 width in 150 < PT < 186 GeV in the central dijet region.
Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb$^{-1}$ of $pp$ collisions collected with the ATLAS detector at $\sqrt{s} = 13$ TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant $\alpha_S$. Other observables, such as the momentum sharing between the two subjets, are nearly independent of $\alpha_S$. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tracking detectors. Track-based versions of these observables are not collinear safe, but are measured more precisely, and universal non-perturbative functions can absorb the collinear singularities. The unfolded data are directly compared with QCD calculations and hadron-level Monte Carlo simulations. The measurements are performed in different pseudorapidity regions, which are then used to extract quark and gluon jet shapes using the predicted quark and gluon fractions in each region. All of the parton shower and analytical calculations provide an excellent description of the data in most regions of phase space.
Data from Fig 6a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6c. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6d. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6e. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 6f. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 7a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7d. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7e. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 7f. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 8a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8d. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8e. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 8f. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 21b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5a. The unfolded $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5d. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5e. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5f. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 4b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5a. The unfolded $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 5b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 14c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5d. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 14f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 4f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5e. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 5f. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 36-40a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in (300, 400, 600, 800, 1000, infinity) and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 36-40b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 36-40c. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 81-85c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 51-55a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105a. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 51-55b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105b. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 51-55c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 101-105c. The unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 66-70a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110a. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 66-70b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110b. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 66-70c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110c. The unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 26-30a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 26-30b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 26-30c. The unfolded $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 71-75c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 41-45a. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90a. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 41-45b. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90b. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 41-45c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 86-90c. The unfolded all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 56-60a. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105a. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 56-60b. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105b. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 56-60c. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 101-105c. The unfolded all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 31-35a. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80a. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 31-35b. The unfolded all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80b. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 31-35c. The unfolded $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 76-80c. The unfolded charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from Fig 46-50a. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95a. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 46-50b. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95b. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 46-50c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 91-95c. The unfolded all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from Fig 61-65a. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110a. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 61-65b. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110b. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 61-65c. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from Fig 106-110c. The unfolded all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 6a. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15a. Theextracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6b. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15b. The extracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6c. The extracted quark-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15c. The extracted quark-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 7a. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16a. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7b. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16b. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7c. The extracted quark-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16c. The extracted quark-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8a. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17a. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8b. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17b. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8c. The extracted quark-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17c. The extracted quark-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 6a. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15a. Theextracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6b. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15b. The extracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 6c. The extracted gluon-distribution from the unfolded all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 15c. The extracted gluon-distribution from the unfolded charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 7a. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16a. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7b. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16b. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 7c. The extracted gluon-distribution from the unfolded all-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 16c. The extracted gluon-distribution from the unfolded charged-particle $z_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8a. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17a. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8b. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17b. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 8c. The extracted gluon-distribution from the unfolded all-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from Fig 17c. The extracted gluon-distribution from the unfolded charged-particle $R_g$ distribution for anti-kt R=0.8 jets with 600 < $p_T$ < 800 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 99a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 99b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 99c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 100c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 101a. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102a. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 101b. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102b. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 101c. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 102c. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103a. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104a. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103b. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104b. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 103c. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 104c. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 105a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 105b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 105c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 106c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 107a. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108a. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 107b. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108b. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 107c. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 108c. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109a. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110a. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109b. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110b. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 109c. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 110c. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 111a. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112a. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111b. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112b. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111c. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112c. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 113a. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114a. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 113b. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114b. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 113c. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 114c. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115a. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116a. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115b. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116b. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 115c. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 116c. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$.
Data from FigAux 99d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 99e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 99f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 100f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 101d. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102d. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 101e. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102e. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 101f. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 102f. The full covariance matrices for the all-particle $z_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 103d. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104d. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 103e. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104e. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 103f. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 104f. The full covariance matrices for the all-particle $R_g$ distribution for anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 105d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 105e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 105f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 106f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 107d. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108d. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 107e. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108e. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 107f. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 108f. The full covariance matrices for the all-particle $z_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 109d. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110d. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 109e. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110e. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 109f. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 110f. The full covariance matrices for the all-particle $R_g$ distribution for the more central of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 111d. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112d. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 111e. The full covariance matrices for the all-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from FigAux 112e. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 111f. The full covariance matrices for the $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 112f. The full covariance matrices for the charged-particle $log_{10}(\rho^2)$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 113d. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114d. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 113e. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114e. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 113f. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 114f. The full covariance matrices for the all-particle $z_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 10 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 10 evenly spaced bins in $z_g$ from 0.0 to 0.5.
Data from FigAux 115d. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116d. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 115e. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116e. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 115f. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
Data from FigAux 116f. The full covariance matrices for the all-particle $R_g$ distribution for the more forward of the two anti-kt R=0.8 jets with $p_T$ > 300 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. The distributions are normalized to the integrated cross section, $\sigma$. Each set of 6 bins corresponds to one $p_T$ bin in {300, 400, 600, 800, 1000, infinity } and 6 bins in $r_g$ (0.06310, 0.10000, 0.15849, 0.25119, 0.39811, 0.63096, 0.80000).
The transverse momentum balance of pairs of back-to-back b quark jets in PbPb and pp collisions recorded with the CMS detector at the LHC is reported. The center-of-mass energy in both collision systems is 5.02 TeV per nucleon pair. Compared to the pp collision baseline, b quark jets have a larger imbalance in the most central PbPb collisions, as expected from the jet quenching effect. The data are also compared to the corresponding measurement with inclusive dijets. In the most central collisions, the imbalance of b quark dijets is comparable to that of inclusive dijets.
Performance of double b-jet tagging, in terms of b-tagging purity and efficiency
Delta phi distributions of incluisve dijets and b-quark dijets in pp collisions
Delta phi distributions of incluisve dijets and b-quark dijets in central (0-10%) PbPb collisions
x_J distribution of incluisve dijets in pp collisions
x_J distribution of b-quark dijets in pp collisions
x_J distribution of incluisve dijets in PbPb collisions (0-10%)
x_J distribution of b-quark dijets in PbPb collisions (0-10%)
x_J distribution of incluisve dijets in PbPb collisions (10-30%)
x_J distribution of b-quark dijets in PbPb collisions (10-30%)
x_J distribution of incluisve dijets in PbPb collisions (30-100%)
x_J distribution of b-quark dijets in PbPb collisions (30-100%)
Mean x_J of incluisve dijets in pp and PbPb collisions vs. number of participants
Mean x_J of b-quark dijets in pp and PbPb collisions vs. numberof participants
Mean x_J of inclusive jets and b-quark dijets in PbPb collisions minus mean x_J in pp collisions vs. numberof participants
Jet substructure observables have significantly extended the search program for physics beyond the Standard Model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross-section is measured as a function of log$_{10}\rho^2$, where $\rho$ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.
Data from Fig 3a. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 0, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 3b. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$.
Data from Fig 3c. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, $\sigma$(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. The uncertainties are applied symmetrically, though the cross section cannot go below zero in the first bin.
Data from FigAux 4 and FigAux 8a-16a. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for beta = 0, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, sigma(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {600, 650, 700, 750, 800, 850, 900, 950, 1000, ∞ } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 4 and FigAux 8b-16b. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 1, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, sigma(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {600, 650, 700, 750, 800, 850, 900, 950, 1000, ∞ } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 8c-16c. The unfolded $log_{10}(\rho^2)$ distribution for anti-kt R=0.8 jets with $p_T$(lead) > 600 GeV, after the soft drop algorithm is applied for $\beta$ = 2, in data. All uncertainties described in the text are shown on the data; the uncertainties from the calculations are shown on each one. The distributions are normalized to the integrated cross section, sigma(resum), measured in the resummation region, $-3.7 < log_{10}(\rho^2) < -1.7$. Each set of 10 bins corresponds to one $p_T$ bin in {600, 650, 700, 750, 800, 850, 900, 950, 1000, ∞ } and 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 6a. The summed covariance matrices of the systematic and statistical uncertainties for the combined $p_T$ and $log_{10}(\rho^2)$ bins for $\beta$ = 0. Each group of 10 bins corresponds to a bin of $p_T$ in {600, 650, 700, 750, 800, 850, 900, 950, 1000, ∞ }; each bin within the $p_T$ bin corresponds to 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 6b. The summed covariance matrices of the systematic and statistical uncertainties for the combined $p_T$ and $log_{10}(\rho^2)$ bins for $\beta$ = 1. Each group of 10 bins corresponds to a bin of $p_T$ in {600, 650, 700, 750, 800, 850, 900, 950, 1000, ∞ }; each bin within the $p_T$ bin corresponds to 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 6c. The summed covariance matrices of the systematic and statistical uncertainties for the combined $p_T$ and $log_{10}(\rho^2)$ bins for $\beta$ = 2. Each group of 10 bins corresponds to a bin of $p_T$ in {600, 650, 700, 750, 800, 850, 900, 950, 1000, ∞ }; each bin within the $p_T$ bin corresponds to 10 evenly spaced bins in $log_{10}(\rho^2)$ from -4.5 to -0.5.
Data from FigAux 7a. The summed covariance matrices of the systematic and statistical uncertainties for the $log_{10}(\rho^2)$ bins for $\beta$ = 0, inclusive in $p_T$.
Data from FigAux 7b. The summed covariance matrices of the systematic and statistical uncertainties for the $log_{10}(\rho^2)$ bins for $\beta$ = 1, inclusive in $p_T$.
Data from FigAux 7c. The summed covariance matrices of the systematic and statistical uncertainties for the $log_{10}(\rho^2)$ bins for $\beta$ = 2, inclusive in $p_T$.
A search for resonances and quantum black holes is performed using the dijet mass spectra measured in proton-proton collisions at sqrt(s) = 8 TeV with the CMS detector at the LHC. The data set corresponds to an integrated luminosity of 19.7 inverse femtobarns. In a search for narrow resonances that couple to quark-quark, quark-gluon, or gluon-gluon pairs, model-independent upper limits, at 95% confidence level, are obtained on the production cross section of resonances, with masses above 1.2 TeV. When interpreted in the context of specific models the limits exclude: string resonances with masses below 5.0 TeV; excited quarks below 3.5 TeV; scalar diquarks below 4.7 TeV; W' bosons below 1.9 TeV or between 2.0 and 2.2 TeV; Z' bosons below 1.7 TeV; and Randall-Sundrum gravitons below 1.6 TeV. A separate search is conducted for narrow resonances that decay to final states including b quarks. The first exclusion limit is set for excited b quarks, with a lower mass limit between 1.2 and 1.6 TeV depending on their decay properties. Searches are also carried out for wide resonances, assuming for the first time width-to-mass ratios up to 30%, and for quantum black holes with a range of model parameters. The wide resonance search excludes axigluons and colorons with mass below 3.6 TeV, and color-octet scalars with mass below 2.5 TeV. Lower bounds between 5.0 and 6.3 TeV are set on the masses of quantum black holes.
Inclusive dijet mass spectrum from wide jets (points) compared to a fit (solid curve) and to predictions including detector simulation of multijet events and signal resonances. The predicted multijet shape (QCD MC) has been scaled to the data (see text). The vertical error bars are statistical only and the horizontal error bars are the bin widths. For comparison,the signal distributions for a W resonance of mass 1900 GeV and an excited quark of mass 3.6 TeV are shown. The bin-by-bin fit residuals scaled to the statistical uncertainty of the data , (data - fit)/$\sigma_{data}$, are shown at the bottom and compared with the expected signal contributions.
Observed 95% CL upper limits on $\sigma B A$ for narrow qq, qg, and gg resonances, from the inclusive analysis for signal masses between 1.2 and 5.5 TeV.
Observed 95% CL upper limits on $\sigma B A$ for narrow gg/bb, qq/bb, and bg resonances from the b-enriched analysis, for signal masses between 1.2 and 4.0 TeV. The upper limits are given for different ratios $f_{bb}$ for gg/bb and qq/bb resonances, and for 100% branching fraction into bg.
Observed and expected 95% CL exclusions on the mass of various resonances. Systematic uncertainties are taken into account. For excited b quark the expected mass limit is below the range of this analysis. For the Axigluon/coloron and color-octet scalar only observed mass limits are computed.
Observed 95% CL upper limits on $\sigma B A$ as a function of resonance mass for several values of the width-to-mass ratio $\Gamma$ / M, computed for qq $\to$ G $\to$ qq.
Observed 95% CL upper limits on $\sigma B A$ as a function of resonance mass for several values of the width-to-mass ratio $\Gamma$ / M, computed for gg $\to$ G $\to$ gg.
Observed 95% CL upper limits on $\sigma B A$ for QBHs from the inclusive analysis. These limits are valid for the number of extra dimensions n considered in this paper, ranging from 1 to 6.
Observed 95% CL lower limits on ${M_{QBH}}^{min}$ for different numbers of extra dimensions n and several values of M$_{D}$.
Correction factors defined as the ratio of the full cross section obtained from Eqs. (5)-(7) to the cross section from the narrow-width approximation calculations, as a function of the resonance mass, for qq resonances and for eight different resonance widths in proton-proton collisions at $\sqrt{s}$=8 TeV.
Correction factors defined as the ratio of the full cross section obtained from Eqs. (5)-(7) to the cross section from the narrow-width approximation calculations, as a function of the resonance mass, for gg resonances and for eight different resonance widths in proton-proton collisions at $\sqrt{s}$=8 TeV.
A search is reported for massive resonances decaying into a quark and a vector boson (W or Z), or two vector bosons (WW, WZ, or ZZ). The analysis is performed on an inclusive sample of multijet events corresponding to an integrated luminosity of 19.7 inverse femtobarns, collected in proton-proton collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC. The search uses novel jet-substructure identification techniques that provide sensitivity to the presence of highly boosted vector bosons decaying into a pair of quarks. Exclusion limits are set at a confidence level of 95% on the production of: (i) excited quark resonances q* decaying to qW and qZ for masses less than 3.2 TeV and 2.9 TeV, respectively, (ii) a Randall-Sundrum graviton G[RS] decaying into WW for masses below 1.2 TeV, and (iii) a heavy partner of the W boson W' decaying into WZ for masses less than 1.7 TeV. For the first time mass limits are set on W' to WZ and G[RS] to WW in the all-jets final state. The mass limits on q* to qW, q* to qZ, W' to WZ, G[RS] to WW are the most stringent to date. A model with a "bulk" graviton G[Bulk] that decays into WW or ZZ bosons is also studied.
DATA - Double W/Z tagged events in HIGH purity bin.
BACKGROUND - Double W/Z tagged background in HIGH purity bin estimated from a fit to data.
BACKGROUND PLUS - Double W/Z tagged background variation upward (1 sigma) in HIGH purity bin estimated from a fit to data.
BACKGROUND MINUS - Double W/Z tagged background variation downward (1 sigma) in HIGH purity bin estimated from a fit to data.
DATA - Double W/Z tagged events in LOW purity bin.
BACKGROUND - Double W/Z tagged background in LOW purity bin estimated from a fit to data.
BACKGROUND PLUS - Double W/Z tagged background variation upward (1 sigma) in LOW purity bin estimated from a fit to data.
BACKGROUND MINUS - Double W/Z tagged background variation downward (1 sigma) in LOW purity bin estimated from a fit to data.
Observed and expected 95% CL exclusions on the mass of various resonances.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.