Centrality dependence of charged jet production in p-Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
CERN-EP-2016-052, 2016.
Inspire Record 1427026 DOI 10.17182/hepdata.72903

Measurements of charged jet production as a function of centrality are presented for p-Pb collisions recorded at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector. Centrality classes are determined via the energy deposit in neutron calorimeters at zero degree, close to the beam direction, to minimise dynamical biases of the selection. The corresponding number of participants or binary nucleon-nucleon collisions is determined based on the particle production in the Pb-going rapidity region. Jets have been reconstructed in the central rapidity region from charged particles with the anti-$k_{\rm T}$ algorithm for resolution parameters $R = 0.2$ and $R = 0.4$ in the transverse momentum range 20 to 120 GeV/$c$. The reconstructed jet momentum and yields have been corrected for detector effects and underlying-event background. In the five centrality bins considered, the charged jet production in p-Pb collisions is consistent with the production expected from binary scaling from pp collisions. The ratio of jet yields reconstructed with the two different resolution parameters is also independent of the centrality selection, demonstrating the absence of major modifications of the radial jet structure in the reported centrality classes.

31 data tables

pp reference spectrum, obtained by scaling down the measured charged jets at 7 TeV to 5.02 TeV for R = 0.2 jets.

$p_{\rm T}$-differential production cross section of charged jets in p-Pb collisions at 5.02 TeV for R = 0.2 measured with the ALICE detector, centrality 0-20%.

$p_{\rm T}$-differential production cross section of charged jets in p-Pb collisions at 5.02 TeV for R = 0.2 measured with the ALICE detector, centrality 20-40%.

More…

Measurement of four-jet differential cross sections in $\sqrt{s}=8$ TeV proton-proton collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 12 (2015) 105, 2015.
Inspire Record 1394679 DOI 10.17182/hepdata.18620

Differential cross sections for the production of at least four jets have been measured in proton-proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider using the ATLAS detector. Events are selected if the four anti-$k_{t}$ R=0.4 jets with the largest transverse momentum ($p_{T}$) within the rapidity range $|y|<2.8$ are well separated ($dR^{\rm min}_{4j}>0.65$), all have $p_{T}>64$ GeV, and include at least one jet with $p_{T} >100$ GeV. The dataset corresponds to an integrated luminosity of 20.3 $fb^{-1}$. The cross sections, corrected for detector effects, are compared to leading-order and next-to-leading-order calculations as a function of the jet momenta, invariant masses, minimum and maximum opening angles and other kinematic variables.

46 data tables

Measured differential four-jet cross section for R=0.4 jets, in bins of pT1, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts. All uncertainties are given in %. The first uncertainty quoted is due to the number of data events. DSYS:mcstat is the statistical uncertainty due to the number of MC simulation events. The other columns, denoted with DSYS, correspond to the experimental systematic uncertainties arising from JES, JER, unfolding and luminosity, respectively.

Measured differential four-jet cross section for R=0.4 jets, in bins of pT2, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts. All other details are as for pT1.

Measured differential four-jet cross section for R=0.4 jets, in bins of pT3, along with the uncertainties in the measurement. The events are selected using the inclusive analysis cuts. All other details are as for pT1.

More…

Measurement of charged jet production cross sections and nuclear modification in p-Pb collisions at $\sqrt{s_\rm{NN}} = 5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 749 (2015) 68-81, 2015.
Inspire Record 1346963 DOI 10.17182/hepdata.68911

Charged jet production cross sections in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV measured with the ALICE detector at the LHC are presented. Using the anti-$k_{\rm T}$ algorithm, jets have been reconstructed in the central rapidity region from charged particles with resolution parameters $R = 0.2$ and $R = 0.4$. The reconstructed jets have been corrected for detector effects and the underlying event background. To calculate the nuclear modification factor, $R_{\rm pPb}$, of charged jets in p-Pb collisions, a pp reference was constructed by scaling previously measured charged jet spectra at $\sqrt{s} = 7$ TeV. In the transverse momentum range $20 \le p_{\rm T,ch\ jet} \le 120$ GeV/$c$, $R_{\rm pPb}$ is found to be consistent with unity, indicating the absence of strong nuclear matter effects on jet production. Major modifications to the radial jet structure are probed via the ratio of jet production cross sections reconstructed with the two different resolution parameters. This ratio is found to be similar to the measurement in pp collisions at $\sqrt{s} = 7$ TeV and to the expectations from PYTHIA pp simulations and NLO pQCD calculations at $\sqrt{s_{\rm NN}} = 5.02$ TeV.

13 data tables

$p_\mathrm{T}$-differential production cross section of charged jets in p-Pb collisions at 5.02 TeV for $R = 0.2$ measured with the ALICE detector.

$p_\mathrm{T}$-differential production cross section of charged jets in p-Pb collisions at 5.02 TeV for R = 0.2 calculated with a Lorentz-boosted NLO pQCD calculation using POWHEG+PYTHIA8 with CTEQ6.6+EPS09.

$p_\mathrm{T}$-differential production cross section of charged jets in p-Pb collisions at 5.02 TeV for R = 0.2 measured with the ALICE detector. Eta-Interval 0.25 < $\eta$ < 0.65.

More…

Measurement of the $W+b$-jet and $W+c$-jet differential production cross sections in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 743 (2015) 6-14, 2015.
Inspire Record 1334689 DOI 10.17182/hepdata.73191

We present a measurement of the cross sections for the associated production of a $W$ boson with at least one heavy quark jet, $b$ or $c$, in proton-antiproton collisions. Data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ recorded with the D0 detector at the Fermilab Tevatron \ppbar Collider at $\sqrt{s}=1.96$ TeV are used to measure the cross sections differentially as a function of the jet transverse momenta in the range 20 to 150 GeV. These results are compared to calculations of perturbative QCD theory as well as predictions from Monte Carlo generators.

3 data tables

The $W + b$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.

The $W + c$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.

The $\sigma(W+c)/\sigma(W+b)$ cross section ratio in bins of $c(b)$-jet $p_T$.


Charged jet cross sections and properties in proton-proton collisions at $\sqrt{s}=7$ TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.D 91 (2015) 112012, 2015.
Inspire Record 1328629 DOI 10.17182/hepdata.68515

The differential charged jet cross sections, jet fragmentation distributions, and jet shapes are measured in minimum bias proton-proton collisions at centre-of-mass energy $\sqrt{s}=7$ TeV using the ALICE detector at the LHC. Jets are reconstructed from charged particle momenta in the mid-rapidity region using the sequential recombination $k_{\rm T}$ and anti-$k_{\rm T}$ as well as the SISCone jet finding algorithms with several resolution parameters in the range $R=0.2$ to $0.6$. Differential jet production cross sections measured with the three jet finders are in agreement in the transverse momentum ($p_{\rm T}$) interval $20<p_{\rm T}^{\rm jet,ch}<100$ GeV/$c$. They are also consistent with prior measurements carried out at the LHC by the ATLAS collaboration. The jet charged particle multiplicity rises monotonically with increasing jet $p_{\rm T}$, in qualitative agreement with prior observations at lower energies. The transverse profiles of leading jets are investigated using radial momentum density distributions as well as distributions of the average radius containing 80% ($\langle R_{\rm 80} \rangle$) of the reconstructed jet $p_{\rm T}$. The fragmentation of leading jets with $R=0.4$ using scaled $p_{\rm T}$ spectra of the jet constituents is studied. The measurements are compared to model calculations from event generators (PYTHIA, PHOJET, HERWIG). The measured radial density distributions and $\langle R_{\rm 80} \rangle$ distributions are well described by the PYTHIA model (tune Perugia-2011). The fragmentation distributions are better described by HERWIG.

73 data tables

Measured charged jet differential cross sections for INEL proton-proton collisions at $\sqrt{s}$ = 7 TeV.

Measured charged jet differential cross sections for INEL proton-proton collisions at $\sqrt{s}$ = 7 TeV.

Measured charged jet differential cross sections for INEL proton-proton collisions at $\sqrt{s}$ = 7 TeV.

More…

Measurements of jet multiplicity and differential production cross sections of Z+jets events in proton-proton collisions at sqrt(s)=7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 91 (2015) 052008, 2015.
Inspire Record 1310737 DOI 10.17182/hepdata.67635

Measurements of differential cross sections are presented for the production of a Z boson and at least one hadronic jet in proton-proton collisions at sqrt(s) = 7 TeV, recorded by the CMS detector, using a data sample corresponding to an integrated luminosity of 4.9 inverse femtobarns. The jet multiplicity distribution is measured for up to six jets. The differential cross sections are measured as a function of jet transverse momentum and pseudorapidity for the four highest transverse momentum jets. The distribution of the scalar sum of jet transverse momenta is also measured as a function of the jet multiplicity. The measurements are compared with theoretical predictions at leading and next-to-leading order in perturbative QCD.

14 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 6.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 6.

The cross section measurement as a function of the transverse momentum of the leading jet.

More…

Measurement of differential production cross-sections for a $Z$ boson in association with $b$-jets in 7 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 10 (2014) 141, 2014.
Inspire Record 1306294 DOI 10.17182/hepdata.65389

Measurements of differential production cross-sections of a $Z$ boson in association with $b$-jets in $pp$ collisions at $\sqrt{s}=7$ TeV are reported. The data analysed correspond to an integrated luminosity of 4.6 fb$^{-1}$ recorded with the ATLAS detector at the Large Hadron Collider. Particle-level cross-sections are determined for events with a $Z$ boson decaying into an electron or muon pair, and containing $b$-jets. For events with at least one $b$-jet, the cross-section is presented as a function of the $Z$ boson transverse momentum and rapidity, together with the inclusive $b$-jet cross-section as a function of $b$-jet transverse momentum, rapidity and angular separations between the $b$-jet and the $Z$ boson. For events with at least two $b$-jets, the cross-section is determined as a function of the invariant mass and angular separation of the two highest transverse momentum $b$-jets, and as a function of the $Z$ boson transverse momentum and rapidity. Results are compared to leading-order and next-to-leading-order perturbative QCD calculations.

28 data tables

Integrated $Z+\ge 1$ $b$-jet cross-section and the integrated inclusive $b$-jet cross-sections.

Breakdown of systematic uncertainties (in %) for the integrated $Z+\ge 1$ $b$-jet cross-section and the integrated inclusive $b$-jet cross-sections.

The inclusive $b$-jet cross-section $\sigma(Zb)\times N_{b\text{-jet}}$ as a function of $b$-jet $p_T$ together with the corresponding non-perturbative corrections.

More…

Measurement of the $t\bar{t}$ production cross-section as a function of jet multiplicity and jet transverse momentum in 7 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 01 (2015) 020, 2015.
Inspire Record 1304688 DOI 10.17182/hepdata.18665

The $t\bar{t}$ production cross-section dependence on jet multiplicity and jet transverse momentum is reported for proton--proton collisions at a centre-of-mass energy of 7 TeV in the single-lepton channel. The data were collected with the ATLAS detector at the CERN Large Hadron Collider and comprise the full 2011 data sample corresponding to an integrated luminosity of 4.6 fb$^{-1}$. Differential cross-sections are presented as a function of the jet multiplicity for up to eight jets using jet transverse momentum thresholds of 25, 40, 60, and 80 GeV, and as a function of jet transverse momentum up to the fifth jet. The results are shown after background subtraction and corrections for all detector effects, within a kinematic range closely matched to the experimental acceptance. Several QCD-based Monte Carlo models are compared with the results. Sensitivity to the parton shower modelling is found at the higher jet multiplicities, at high transverse momentum of the leading jet and in the transverse momentum spectrum of the fifth leading jet. The MC@NLO+HERWIG MC is found to predict too few events at higher jet multiplicities.

9 data tables

Measurement of the $t\overline{t}$ cross-section as a function of the jet multiplicity for jets with $p_{\mathrm{T}}$ larger than 25 GeV. The uncertainties given correspond to the individual contributions of each source of systematic uncertainty as described in the paper.

Measurement of the $t\overline{t}$ cross-section as a function of the jet multiplicity for jets with $p_{\mathrm{T}}$ larger than 40 GeV. The uncertainties given correspond to the individual contributions of each source of systematic uncertainty as described in the paper.

Measurement of the $t\overline{t}$ cross-section as a function of the jet multiplicity for jets with $p_{\mathrm{T}}$ larger than 60 GeV. The uncertainties given correspond to the individual contributions of each source of systematic uncertainty as described in the paper.

More…

Differential cross section measurements for the production of a W boson in association with jets in proton-proton collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 741 (2015) 12-37, 2015.
Inspire Record 1303894 DOI 10.17182/hepdata.67318

Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pt) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 inverse femtobarns. The measured cross sections are compared to predictions from Monte Carlo generators, MADGRAPH + PYTHIA and SHERPA, and to next-to-leading-order calculations from BLACKHAT + SHERPA. The differential cross sections are found to be in agreement with the predictions, apart from the pt distributions of the leading jets at high pt values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.

18 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 6.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 6.

The differential cross section measurement as a function of the transverse momentum of the first leading jet.

More…

Measurement of the differential $\gamma+2~b$-jet cross section and the ratio $\sigma$($\gamma+2~b$-jets)/$\sigma$($\gamma+b$-jet) in $p\bar{p}$ collisions at $\sqrt{s}$=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 737 (2014) 357-365, 2014.
Inspire Record 1296263 DOI 10.17182/hepdata.64151

We present the first measurements of the differential cross section $d\sigma/dp_{T}^{\gamma}$ for the production of an isolated photon in association with at least two $b$-quark jets. The measurements consider photons with rapidities $|y^\gamma| < 1.0$ and transverse momenta $30 < p_{T}^{\gamma} < 200$~\GeV. The $b$-quark jets are required to have $p_T^{jet}>15$ GeV and $| y^{jet}| < 1.5$. The ratio of differential production cross sections for $\gamma+2~b$-jets to $\gamma+b$-jet as a function of $p_{T}^{\gamma}$ is also presented. The results are based on the proton-antiproton collision data at $\sqrt{s}=$1.96~\TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next-to-leading order perturbative QCD calculations as well as predictions based on the $k_{T}$-factorization approach and those from the SHERPA and PYTHIA Monte Carlo event generators.

3 data tables

The differential GAMMA+2BJET production cross section, DSIG/DPT(GAMMA), in bins of PT(GAMMA).

The differential GAMMA+BJET production cross section, DSIG/DPT(GAMMA), in bins of PT(GAMMA).

The SIG(GAMMA 2BJET)/SIG(GAMMA BJET) cross section ratio in bins of PT(GAMMA).